terclim by ICS banner
IVES 9 IVES Conference Series 9 Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

Abstract

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causinggrapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance. Gene silencing is induced upon exogenous application of dsRNA, which can interfere with protein synthesis. With the aim of identifying new candidate genes to be employed in breeding programs, three novel candidate S genes to downy mildew, VviLBDIf7, VviAS1 and VviB3, have been identified. Candidates’ validation was carried out through RNAi on the susceptible cultivar Pinot noir. Disease severity was estimated by experimental inoculation of P. viticola on leaves sampled at different timepoints after the treatment with dsRNA, while gene expression was evaluated by real time RT-PCR. Successful downregulation of candidate genes resulted in a significant reduction of plants susceptibility to downy mildew, suggesting our candidates as downy mildew S genes, leading to the possibility of employing an RNAi-based strategy as a more sustainable alternative to conventional management strategies.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elisabetta Sergi1*, Giuliana Maddalena1, Valentina Ricciardi1, Demetrio Marcianò1, Beatrice Lecchi1, Osvaldo Failla1, Silvia Laura Toffolatti1, Gabriella De Lorenzis1

1 Affliliation Department of Agricultural and Environmental Sciences, via G. Celoria 2, 20133 Milan (Italy)

Contact the author*

Keywords

S genes, RNAi, gene silencing, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Swiss terroirs studies

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.