terclim by ICS banner
IVES 9 IVES Conference Series 9 Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

Abstract

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causinggrapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance. Gene silencing is induced upon exogenous application of dsRNA, which can interfere with protein synthesis. With the aim of identifying new candidate genes to be employed in breeding programs, three novel candidate S genes to downy mildew, VviLBDIf7, VviAS1 and VviB3, have been identified. Candidates’ validation was carried out through RNAi on the susceptible cultivar Pinot noir. Disease severity was estimated by experimental inoculation of P. viticola on leaves sampled at different timepoints after the treatment with dsRNA, while gene expression was evaluated by real time RT-PCR. Successful downregulation of candidate genes resulted in a significant reduction of plants susceptibility to downy mildew, suggesting our candidates as downy mildew S genes, leading to the possibility of employing an RNAi-based strategy as a more sustainable alternative to conventional management strategies.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Elisabetta Sergi1*, Giuliana Maddalena1, Valentina Ricciardi1, Demetrio Marcianò1, Beatrice Lecchi1, Osvaldo Failla1, Silvia Laura Toffolatti1, Gabriella De Lorenzis1

1 Affliliation Department of Agricultural and Environmental Sciences, via G. Celoria 2, 20133 Milan (Italy)

Contact the author*

Keywords

S genes, RNAi, gene silencing, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois