terclim by ICS banner
IVES 9 IVES Conference Series 9 Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Abstract

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine. Fortunately, the possibility of modeling proteins and complex structures with Artificial Intelligence (AI)-based methods like AlphaFold2 and AlphaFold2-Multimer will facilitate the application of this approach to proteins and complexes without available structure. Moreover, we are developing new methods based on AI to combine AlphaFold models, molecular dynamics (MD), pyDock energy scoring, and CCharPPI descriptors to predict the impact of protein mutations at the molecular level. As a case study, we have modelled the impact of the R197L seedlessness-associated substitution in VviAGL11. This protein is a homo-dimeric transcription factor that interacts with VviMADS4 dimeric protein to form a functional hetero-tetramer. Structural modeling of this complex provides insights into the functional mechanism of this protein and the role of the mentioned mutation. This protein modeling approach could be extended for grapevine mutation analysis at the genomic level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Ángel Rodríguez-Lumbreras1, Víctor Monteagudo1, Pablo Carbonell-Bejerano1, Fabian Glaser2, Juan Fernández-Recio1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, Spain
2 Technion Institute of Technology, Israel

Contact the author*

Keywords

AI-based modeling, Seedless grapes, Protein-protein interactions, Mutation impact analysis, Protein structure

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evolution of the appellation of origin concept in the vineyards of Australia

Australia is the seventh largest producer of wine and crushed 1.42 million tonnes of wine grapes in the 2001 vintage.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Dialing in remote measurements of grapevine water stress by incorporating whole plant physiological responses

Context and purpose of the study. Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress.

The relationship of wine store customers with the areas of production, considering provenance and tourism

This work aims at identifying the most appropriate marketing strategies to inform consumers of the global market about the added value of the wines of Friuli Venezia Giulia.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.