terclim by ICS banner
IVES 9 IVES Conference Series 9 Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Abstract

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine. Fortunately, the possibility of modeling proteins and complex structures with Artificial Intelligence (AI)-based methods like AlphaFold2 and AlphaFold2-Multimer will facilitate the application of this approach to proteins and complexes without available structure. Moreover, we are developing new methods based on AI to combine AlphaFold models, molecular dynamics (MD), pyDock energy scoring, and CCharPPI descriptors to predict the impact of protein mutations at the molecular level. As a case study, we have modelled the impact of the R197L seedlessness-associated substitution in VviAGL11. This protein is a homo-dimeric transcription factor that interacts with VviMADS4 dimeric protein to form a functional hetero-tetramer. Structural modeling of this complex provides insights into the functional mechanism of this protein and the role of the mentioned mutation. This protein modeling approach could be extended for grapevine mutation analysis at the genomic level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Ángel Rodríguez-Lumbreras1, Víctor Monteagudo1, Pablo Carbonell-Bejerano1, Fabian Glaser2, Juan Fernández-Recio1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, Spain
2 Technion Institute of Technology, Israel

Contact the author*

Keywords

AI-based modeling, Seedless grapes, Protein-protein interactions, Mutation impact analysis, Protein structure

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.