terclim by ICS banner
IVES 9 IVES Conference Series 9 Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Abstract

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine. Fortunately, the possibility of modeling proteins and complex structures with Artificial Intelligence (AI)-based methods like AlphaFold2 and AlphaFold2-Multimer will facilitate the application of this approach to proteins and complexes without available structure. Moreover, we are developing new methods based on AI to combine AlphaFold models, molecular dynamics (MD), pyDock energy scoring, and CCharPPI descriptors to predict the impact of protein mutations at the molecular level. As a case study, we have modelled the impact of the R197L seedlessness-associated substitution in VviAGL11. This protein is a homo-dimeric transcription factor that interacts with VviMADS4 dimeric protein to form a functional hetero-tetramer. Structural modeling of this complex provides insights into the functional mechanism of this protein and the role of the mentioned mutation. This protein modeling approach could be extended for grapevine mutation analysis at the genomic level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Ángel Rodríguez-Lumbreras1, Víctor Monteagudo1, Pablo Carbonell-Bejerano1, Fabian Glaser2, Juan Fernández-Recio1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, Spain
2 Technion Institute of Technology, Israel

Contact the author*

Keywords

AI-based modeling, Seedless grapes, Protein-protein interactions, Mutation impact analysis, Protein structure

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

L’évolution des Appellations d’Origine aux Etats-Unis

Un peu d’histoire pour nous efforcer de mettre le sujet des appellations dans un contexte général. Six cents ans avant Jésus-Christ, le Côte du Rhône était plantée en vignes peu après l’arrivée des Grecs

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).