terclim by ICS banner
IVES 9 IVES Conference Series 9 Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Abstract

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine. Fortunately, the possibility of modeling proteins and complex structures with Artificial Intelligence (AI)-based methods like AlphaFold2 and AlphaFold2-Multimer will facilitate the application of this approach to proteins and complexes without available structure. Moreover, we are developing new methods based on AI to combine AlphaFold models, molecular dynamics (MD), pyDock energy scoring, and CCharPPI descriptors to predict the impact of protein mutations at the molecular level. As a case study, we have modelled the impact of the R197L seedlessness-associated substitution in VviAGL11. This protein is a homo-dimeric transcription factor that interacts with VviMADS4 dimeric protein to form a functional hetero-tetramer. Structural modeling of this complex provides insights into the functional mechanism of this protein and the role of the mentioned mutation. This protein modeling approach could be extended for grapevine mutation analysis at the genomic level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Ángel Rodríguez-Lumbreras1, Víctor Monteagudo1, Pablo Carbonell-Bejerano1, Fabian Glaser2, Juan Fernández-Recio1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, Spain
2 Technion Institute of Technology, Israel

Contact the author*

Keywords

AI-based modeling, Seedless grapes, Protein-protein interactions, Mutation impact analysis, Protein structure

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Polyphenol content examination of Tokaji Aszú wines

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos.

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.

Developing and assessing different cordon establishment techniques for long-term vineyard management

Aim: The aim of this research is to quantify the impacts of different cordon establishment techniques on vine health and longevity. It is hypothesised that wrapping developing cordon arms tightly around the cordon wire will cause a constriction of the vascular system, becoming worse over time and disrupting the flow of water and nutrients.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].