terclim by ICS banner
IVES 9 IVES Conference Series 9 Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Abstract

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine. Fortunately, the possibility of modeling proteins and complex structures with Artificial Intelligence (AI)-based methods like AlphaFold2 and AlphaFold2-Multimer will facilitate the application of this approach to proteins and complexes without available structure. Moreover, we are developing new methods based on AI to combine AlphaFold models, molecular dynamics (MD), pyDock energy scoring, and CCharPPI descriptors to predict the impact of protein mutations at the molecular level. As a case study, we have modelled the impact of the R197L seedlessness-associated substitution in VviAGL11. This protein is a homo-dimeric transcription factor that interacts with VviMADS4 dimeric protein to form a functional hetero-tetramer. Structural modeling of this complex provides insights into the functional mechanism of this protein and the role of the mentioned mutation. This protein modeling approach could be extended for grapevine mutation analysis at the genomic level.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luis Ángel Rodríguez-Lumbreras1, Víctor Monteagudo1, Pablo Carbonell-Bejerano1, Fabian Glaser2, Juan Fernández-Recio1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, Spain
2 Technion Institute of Technology, Israel

Contact the author*

Keywords

AI-based modeling, Seedless grapes, Protein-protein interactions, Mutation impact analysis, Protein structure

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

Agroclimatic zonation for vine growing in Maranhão State, Brazil

es indices agroclimatiques concernant le bilan hydrique et la température moyenne de l’air, ont été utilisés pour la caractérisation des zones avec différentes aptitudes pour la viticulture de vin (Vitis vinifera L.) dans l’état du Maranhão, Brésil.

Enhancing vine resilience and protecting grape production in Mediterranean vineyards: the role of anti-hail shading nets and kaolin applications

Climate change and rising temperatures present a substantial challenge to viticulture, intensifying summer heat stress and accelerating berry ripening.

Fleurtai, Soreli and Tocai Friulano: perspectives for quality integration of wine together with protection of the DOCG Lison Classico appellation

In modern viticulture, sustainability must be considered not only into the winery, but in the vineyard as well, being that with the most attentive interventions in order to protect the environment. In this context, the new “fungi resistant” varieties represent a valid option for reducing the negative environmental impact of agrochemicals used in viticulture, including those ones used in organic farming (given the copper accumulation into soils). Several application studies have demonstrated the enological validity of many resistant varieties, both in price and as a blend. Also, under the production point of view, the feasibility and economical sustainability of the new resistant varieties was verified. The aim of this work was to deepen the knowledge on the organoleptic characteristics of wines obtained from the Fleurtai and Soreli varieties and to compare them with the wine obtained from Tocai Friulano, the mother variety in the area destined for the production of the Lison Classico DOCG appellation. The purpose of the work is then to verify the possibility of introducing resistant varieties into the DOCG while maintaining the wine name of the appellation linked to the territory.