terclim by ICS banner
IVES 9 IVES Conference Series 9 Haplotype-Resolved genome assembly of the Microvine

Haplotype-Resolved genome assembly of the Microvine

Abstract

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution. We used a trio-binning method combining PacBio HiFi and parental Illumina reads to develop a high-quality, haplotype-resolved microvine genome. This genome was refined using chromosome scaffolding with high-throughput chromosome conformation capture (Hi-C). To evaluate genome quality, we compared this genome with our own highly curated microvine genome, which was produced using a combination of Oxford Nanopore and PacBio Sequel I sequencing. While the new genome retains considerable large-scale structural synteny with existing grape genomes, it also revealed significant differences between haplotypes. The phasing approach has elucidated the unique allelic contributions of essential gene families like GRAS, which contribute to the microvine dwarfing, or MYB, involved in regulating pigment accumulation in berries. The roles of additional gene variants, alongside associated alternative-splicing events, provide insights into the dynamic regulation of these key gene families across haplotypes. This comprehensive genomic resource will accelerate the functional characterization of complex molecular gene interactions, enhance molecular marker development, and improve the precision of genome editing tools in grapevine research.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Samuel Talbot1*, Steven Carrell2, Brent Kronmiller2, Satyanarayana Gouthu1, Luca Bianco3, Paolo Fontana3, Mickael Malnoy3, and Laurent G. Deluc1&4

1Department of Horticulture, Oregon State University, Corvallis, USA
2Center for Quantitative Life Sciences, Oregon State University, Corvallis, USA,
3Foundation Edmund Mach, San Michelle All’addige, Italy
4Oregon Wine Research Institute, Oregon State University, Corvallis, USA

Contact the author*

Keywords

Microvine, HiFi, Haplotype-resolved genome, trio-binning method

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs