terclim by ICS banner
IVES 9 IVES Conference Series 9 Haplotype-Resolved genome assembly of the Microvine

Haplotype-Resolved genome assembly of the Microvine

Abstract

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution. We used a trio-binning method combining PacBio HiFi and parental Illumina reads to develop a high-quality, haplotype-resolved microvine genome. This genome was refined using chromosome scaffolding with high-throughput chromosome conformation capture (Hi-C). To evaluate genome quality, we compared this genome with our own highly curated microvine genome, which was produced using a combination of Oxford Nanopore and PacBio Sequel I sequencing. While the new genome retains considerable large-scale structural synteny with existing grape genomes, it also revealed significant differences between haplotypes. The phasing approach has elucidated the unique allelic contributions of essential gene families like GRAS, which contribute to the microvine dwarfing, or MYB, involved in regulating pigment accumulation in berries. The roles of additional gene variants, alongside associated alternative-splicing events, provide insights into the dynamic regulation of these key gene families across haplotypes. This comprehensive genomic resource will accelerate the functional characterization of complex molecular gene interactions, enhance molecular marker development, and improve the precision of genome editing tools in grapevine research.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Samuel Talbot1*, Steven Carrell2, Brent Kronmiller2, Satyanarayana Gouthu1, Luca Bianco3, Paolo Fontana3, Mickael Malnoy3, and Laurent G. Deluc1&4

1Department of Horticulture, Oregon State University, Corvallis, USA
2Center for Quantitative Life Sciences, Oregon State University, Corvallis, USA,
3Foundation Edmund Mach, San Michelle All’addige, Italy
4Oregon Wine Research Institute, Oregon State University, Corvallis, USA

Contact the author*

Keywords

Microvine, HiFi, Haplotype-resolved genome, trio-binning method

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.