terclim by ICS banner
IVES 9 IVES Conference Series 9 Haplotype-Resolved genome assembly of the Microvine

Haplotype-Resolved genome assembly of the Microvine

Abstract

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution. We used a trio-binning method combining PacBio HiFi and parental Illumina reads to develop a high-quality, haplotype-resolved microvine genome. This genome was refined using chromosome scaffolding with high-throughput chromosome conformation capture (Hi-C). To evaluate genome quality, we compared this genome with our own highly curated microvine genome, which was produced using a combination of Oxford Nanopore and PacBio Sequel I sequencing. While the new genome retains considerable large-scale structural synteny with existing grape genomes, it also revealed significant differences between haplotypes. The phasing approach has elucidated the unique allelic contributions of essential gene families like GRAS, which contribute to the microvine dwarfing, or MYB, involved in regulating pigment accumulation in berries. The roles of additional gene variants, alongside associated alternative-splicing events, provide insights into the dynamic regulation of these key gene families across haplotypes. This comprehensive genomic resource will accelerate the functional characterization of complex molecular gene interactions, enhance molecular marker development, and improve the precision of genome editing tools in grapevine research.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Samuel Talbot1*, Steven Carrell2, Brent Kronmiller2, Satyanarayana Gouthu1, Luca Bianco3, Paolo Fontana3, Mickael Malnoy3, and Laurent G. Deluc1&4

1Department of Horticulture, Oregon State University, Corvallis, USA
2Center for Quantitative Life Sciences, Oregon State University, Corvallis, USA,
3Foundation Edmund Mach, San Michelle All’addige, Italy
4Oregon Wine Research Institute, Oregon State University, Corvallis, USA

Contact the author*

Keywords

Microvine, HiFi, Haplotype-resolved genome, trio-binning method

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

Try the GiESCO EcoMetaEthical Charter !

The sustainability of vineyards is a major issue. The choices proposed to date have major flaws such as the lack of scientific bases or the use of dangerous products such as copper. GiESCO has published a charter of best practices for the environment and for people adapted to various environments. The use of sustainably resistant grape varieties that produce quality wines plays a central role here. Often innovative cultivation systems associated with new technologies and based on scientific bases, guarantee respect for people and the environment. These proposals are brought together in a charter which is part of a meta-ethical approach to seeking consensual measures to ensure the sustainability of vineyards.