terclim by ICS banner
IVES 9 IVES Conference Series 9 Haplotype-Resolved genome assembly of the Microvine

Haplotype-Resolved genome assembly of the Microvine

Abstract

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution. We used a trio-binning method combining PacBio HiFi and parental Illumina reads to develop a high-quality, haplotype-resolved microvine genome. This genome was refined using chromosome scaffolding with high-throughput chromosome conformation capture (Hi-C). To evaluate genome quality, we compared this genome with our own highly curated microvine genome, which was produced using a combination of Oxford Nanopore and PacBio Sequel I sequencing. While the new genome retains considerable large-scale structural synteny with existing grape genomes, it also revealed significant differences between haplotypes. The phasing approach has elucidated the unique allelic contributions of essential gene families like GRAS, which contribute to the microvine dwarfing, or MYB, involved in regulating pigment accumulation in berries. The roles of additional gene variants, alongside associated alternative-splicing events, provide insights into the dynamic regulation of these key gene families across haplotypes. This comprehensive genomic resource will accelerate the functional characterization of complex molecular gene interactions, enhance molecular marker development, and improve the precision of genome editing tools in grapevine research.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Samuel Talbot1*, Steven Carrell2, Brent Kronmiller2, Satyanarayana Gouthu1, Luca Bianco3, Paolo Fontana3, Mickael Malnoy3, and Laurent G. Deluc1&4

1Department of Horticulture, Oregon State University, Corvallis, USA
2Center for Quantitative Life Sciences, Oregon State University, Corvallis, USA,
3Foundation Edmund Mach, San Michelle All’addige, Italy
4Oregon Wine Research Institute, Oregon State University, Corvallis, USA

Contact the author*

Keywords

Microvine, HiFi, Haplotype-resolved genome, trio-binning method

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.