terclim by ICS banner
IVES 9 IVES Conference Series 9 Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Abstract

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves. Using simple modeling strategies, we show that many elements like potassium and phosphorous can be explained by hyperspectral reflectance patterns (R2 = 0.50 and 0.62, respectively). In a predictive framework, we show that the predicted concentration of macronutrients like potassium correlate with the true, known value (r = 0.68). We additionally show that even some micronutrients such as nickel can be predicted (r = 0.53) from hyperspectral reflectance. This work offers a promising approach to assess nutrient composition in the field. We next plan to test our models on independent vineyards to see if the predictions are reasonable given leaf age and time of season. Future work will continue to refine these models for higher quality prediction of more elements and extend to other forms of high-dimensional phenotypes.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zachary Harris1,2*, Danielle Hopkins2,3, Allison Miller2,3

1 Taylor Geospatial Institute, Saint Louis University, St. Louis, MO
2 Donald Danforth Plant Science Center, St. Louis, MO
3 Department of Biology, Saint Louis University, St. Louis, MO

Contact the author*

Keywords

elemental composition, hyperspectral reflectance, statistical modelling, high-throughput phenotyping, Chambourcin

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

A work involving the finding, the description and the recovery of old grapevine varieties from the north and north east of Spain was begun in the CSIC in the year 1987.

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des

Consumer acceptance of sweet wines produced by stopping fermentation with octanoic and decanoic acids

The use of medium chain fatty acids for arresting the fermentation and producing sweet wines was investigated at industrial level. Doses of 10 mg/l of octanoic or decanoic acid and a combination of 5+5 mg/l octanoic and decanoic acid were used to produce sweet wines of tamaioasa romanească variety in volumes of 3000 l.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.