terclim by ICS banner
IVES 9 IVES Conference Series 9 Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Abstract

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves. Using simple modeling strategies, we show that many elements like potassium and phosphorous can be explained by hyperspectral reflectance patterns (R2 = 0.50 and 0.62, respectively). In a predictive framework, we show that the predicted concentration of macronutrients like potassium correlate with the true, known value (r = 0.68). We additionally show that even some micronutrients such as nickel can be predicted (r = 0.53) from hyperspectral reflectance. This work offers a promising approach to assess nutrient composition in the field. We next plan to test our models on independent vineyards to see if the predictions are reasonable given leaf age and time of season. Future work will continue to refine these models for higher quality prediction of more elements and extend to other forms of high-dimensional phenotypes.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zachary Harris1,2*, Danielle Hopkins2,3, Allison Miller2,3

1 Taylor Geospatial Institute, Saint Louis University, St. Louis, MO
2 Donald Danforth Plant Science Center, St. Louis, MO
3 Department of Biology, Saint Louis University, St. Louis, MO

Contact the author*

Keywords

elemental composition, hyperspectral reflectance, statistical modelling, high-throughput phenotyping, Chambourcin

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vineyard floor management intensity impacts soil health indicators and biodiversity across South Australian viticultural landscapes

Vineyard floors in warm, dry landscapes including those in South Australia, have traditionally been managed using intensive practices such as tillage and herbicides to control weeds and vegetation, thereby limiting competition with grapevines for water and nutrients in order to not compromise yields.

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.