terclim by ICS banner
IVES 9 IVES Conference Series 9 Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Abstract

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves. Using simple modeling strategies, we show that many elements like potassium and phosphorous can be explained by hyperspectral reflectance patterns (R2 = 0.50 and 0.62, respectively). In a predictive framework, we show that the predicted concentration of macronutrients like potassium correlate with the true, known value (r = 0.68). We additionally show that even some micronutrients such as nickel can be predicted (r = 0.53) from hyperspectral reflectance. This work offers a promising approach to assess nutrient composition in the field. We next plan to test our models on independent vineyards to see if the predictions are reasonable given leaf age and time of season. Future work will continue to refine these models for higher quality prediction of more elements and extend to other forms of high-dimensional phenotypes.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zachary Harris1,2*, Danielle Hopkins2,3, Allison Miller2,3

1 Taylor Geospatial Institute, Saint Louis University, St. Louis, MO
2 Donald Danforth Plant Science Center, St. Louis, MO
3 Department of Biology, Saint Louis University, St. Louis, MO

Contact the author*

Keywords

elemental composition, hyperspectral reflectance, statistical modelling, high-throughput phenotyping, Chambourcin

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

Grapevine under nutrient stress: exploring the adaptive mechanisms in response to iron deficiency conditions

In plants, stress due to nutrient deficiency can significantly impair their development and productivity.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).