terclim by ICS banner
IVES 9 IVES Conference Series 9 Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Abstract

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves. Using simple modeling strategies, we show that many elements like potassium and phosphorous can be explained by hyperspectral reflectance patterns (R2 = 0.50 and 0.62, respectively). In a predictive framework, we show that the predicted concentration of macronutrients like potassium correlate with the true, known value (r = 0.68). We additionally show that even some micronutrients such as nickel can be predicted (r = 0.53) from hyperspectral reflectance. This work offers a promising approach to assess nutrient composition in the field. We next plan to test our models on independent vineyards to see if the predictions are reasonable given leaf age and time of season. Future work will continue to refine these models for higher quality prediction of more elements and extend to other forms of high-dimensional phenotypes.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Zachary Harris1,2*, Danielle Hopkins2,3, Allison Miller2,3

1 Taylor Geospatial Institute, Saint Louis University, St. Louis, MO
2 Donald Danforth Plant Science Center, St. Louis, MO
3 Department of Biology, Saint Louis University, St. Louis, MO

Contact the author*

Keywords

elemental composition, hyperspectral reflectance, statistical modelling, high-throughput phenotyping, Chambourcin

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Grapevine is one of the crops that may suffer more negative impacts
under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.