OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Wine tannins: What place for grape seed?

Wine tannins: What place for grape seed?

Abstract

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability. 

The polyphenol content and composition of seeds at three different grape maturity stages were characterized (fifteen days before harvest, harvest and fifteen days after harvest). After that, an original approach of nanovinification was conducted. At each maturity stages three winemaking modalities have been produced in duplicate: (i) a control modality, (ii) a seed modality made of exclusively with seed and (iii) a skin modality made of exclusively with skin. The evolution of seed tannins release and tannins wine content has been followed during the winemaking, from alcoholic fermentation to maceration. 

Independently from the grape maturity stage, skin tannins are present at the first step of winemaking contrarily to seed tannins presence which is progressive all along the vinification. The results indicated that (+)-catechin is the less extractable free flavan-3-ols compared to (-)-epicatechin and (-)-epicatechin gallate. Furthermore the mean degree of polymerization of seed proanthocyanidins seems to be directly linked to their extractability, raising the question of the impact of tannins interaction and cellular location on tannins extractability.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Rousserie, Soizic Lacampagne, Sandra Vanbrabant, Amélie Rabot, Laurence Geny-Denis

Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 VILLENAVE D’ORNON, France 

Contact the author

Keywords

Grape Maturity, Tannins, Extraction, Seed 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.

Effects of environmental factors and vineyard pratices on wine flora dynamics

he intensification of t vineyard practices led to an impoverishment of the biological diversity. In vineyard management, the reflection to reduce pesticides uses concerns mainly the soil management of the vineyard, and often focuses on flora management in the inter-row.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.