OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Wine tannins: What place for grape seed?

Wine tannins: What place for grape seed?

Abstract

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability. 

The polyphenol content and composition of seeds at three different grape maturity stages were characterized (fifteen days before harvest, harvest and fifteen days after harvest). After that, an original approach of nanovinification was conducted. At each maturity stages three winemaking modalities have been produced in duplicate: (i) a control modality, (ii) a seed modality made of exclusively with seed and (iii) a skin modality made of exclusively with skin. The evolution of seed tannins release and tannins wine content has been followed during the winemaking, from alcoholic fermentation to maceration. 

Independently from the grape maturity stage, skin tannins are present at the first step of winemaking contrarily to seed tannins presence which is progressive all along the vinification. The results indicated that (+)-catechin is the less extractable free flavan-3-ols compared to (-)-epicatechin and (-)-epicatechin gallate. Furthermore the mean degree of polymerization of seed proanthocyanidins seems to be directly linked to their extractability, raising the question of the impact of tannins interaction and cellular location on tannins extractability.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Rousserie, Soizic Lacampagne, Sandra Vanbrabant, Amélie Rabot, Laurence Geny-Denis

Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 VILLENAVE D’ORNON, France 

Contact the author

Keywords

Grape Maturity, Tannins, Extraction, Seed 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Valorisation of nutraceutical and health-related properties of wine-grapes of Emilia-Romagna Italian region

In this work, results about the composition in polyphenols and polyamines in important wine-grape cultivars from the Emilia-Romagna region are presented. Spectrophotometric and HPLC analyses suggest that especially coloured berries are particularly rich of antioxidant species (stilbenes and catechins). Potential allergenic capability of biogenic amines was also characterized.

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.

Comparison of genotype x environment interaction of clonal and polyclonal grapevine selected materials

Conserving and exploring the intra-varietal diversity of ancient varieties is essential to foster their use in the future, preserving the traditions and history of ancient growing regions and their wines. The conservation of representative samples of ancient varieties and the utilization of intra-varietal variability through polyclonal selection are advisable strategies to save and promote the cultivation of each variety, respectively.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.