OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Wine tannins: What place for grape seed?

Wine tannins: What place for grape seed?

Abstract

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability. 

The polyphenol content and composition of seeds at three different grape maturity stages were characterized (fifteen days before harvest, harvest and fifteen days after harvest). After that, an original approach of nanovinification was conducted. At each maturity stages three winemaking modalities have been produced in duplicate: (i) a control modality, (ii) a seed modality made of exclusively with seed and (iii) a skin modality made of exclusively with skin. The evolution of seed tannins release and tannins wine content has been followed during the winemaking, from alcoholic fermentation to maceration. 

Independently from the grape maturity stage, skin tannins are present at the first step of winemaking contrarily to seed tannins presence which is progressive all along the vinification. The results indicated that (+)-catechin is the less extractable free flavan-3-ols compared to (-)-epicatechin and (-)-epicatechin gallate. Furthermore the mean degree of polymerization of seed proanthocyanidins seems to be directly linked to their extractability, raising the question of the impact of tannins interaction and cellular location on tannins extractability.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Pauline Rousserie, Soizic Lacampagne, Sandra Vanbrabant, Amélie Rabot, Laurence Geny-Denis

Institut des Sciences de la Vigne et du Vin 210 Chemin de Leysotte 33140 VILLENAVE D’ORNON, France 

Contact the author

Keywords

Grape Maturity, Tannins, Extraction, Seed 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Can wine competition awarded points be correlated with wine chromatic and aromatic composition?

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are complexity, balance, color and intensity. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste. Phenolic compounds are the main responsible for wine color, being anthocyanin and tannins the most determinant compounds in red wines. In addition to color, wine aroma is another important attribute linked with quality and consumer preferences.

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).

Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

The use of toasted vine-shoots as an alternative enological tool to make differentiated wines has generated interest among researchers and wineries. However, the evolution of these wines in bottle and the effect on the sensory profile has not been studied so far.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.