OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Abstract

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB). Consequently, a comprehensive understanding of the interactions between yeasts and LAB would be valuable for an efficient implementation of malolactic fermentation (MLF). To this end, the present study was carried out to elucidate the impact of this inoculation protocol on the growth and malolactic activity of Lactobacillus plantarum and Oenococcus oeni strains used to induce MLF, and finally on the chemical and volatile profile of Nebbiolo wines. MLF was carried out by inoculating LAB at the beginning and at the end of the alcoholic fermentation. Yeast inoculation protocol and the combination of tested species influenced LAB population dynamics and malic acid consumption. MLF in which L. plantarum was inoculated at the beginning of the fermentation were completed faster than those inoculated with O. oeni. On the contrary, when L. plantarum was inoculated at the end of alcoholic fermentation a stuck MLF was observed, while O. oeni completed successfully MLF, indicating that inoculation timing of both LAB species was critical to how rapidly starts and finish the MLF. The presence of Starm. bacillaris in mixed fermentations promoted O. oeni growth and increased malic acid consumption rate. Analysis from volatile composition showed that LAB species selection had a greater impact to aroma profile of the wines than inoculation time. This knowledge could be useful to better control MLF in mixed fermentations with Starm. bacillaris and S. cerevisiae, and underlines the importance of the inoculated yeasts on the growth and malolactic activity of the LAB.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Vasileios Englezos (1), David Castrillo Cachón (2), Kalliopi Rantsiou (1), Blanco Pilar (2), Maurizio Petrozziello (3), Matteo Pollon (1), Simone Giacosa (1),SusanaRío Segade (1), Luca Rolle (1), Luca Cocolin (1) 

1 Universitàdegli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy 
2 Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL), Ponte San Clodio s/n. 32427, Leiro, Ourense, Spain 
3 Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Italy) – Centro di ricerca Viticoltura ed Enologia – CREA – VE, via P. Micca 35, Asti, Italy 

Contact the author

Keywords

Starmerella bacillaris, Saccharomyces cerevisiae, Lactobacillus plantarum, Oenococcus oeni 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Utilization of remote sensing technology to detect riesling vineyard variability

ineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology