terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Abstract

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.
A collection of 116 genotypes composed by 24 wine, 56 table and 26 mixed usage varieties was characterized over two seasons measuring several traits determining Compactness Indexes (CI), as proposed in literature. CI-18 performed the best on this collection and genotypes with extreme values with loose and dense bunches were further studied (n = 10 each group). RNA of these samples was collected at key developmental stages to study the expression of VvUCC1, VvGRF4 and other genes associated to this trait. We also evaluated the performance of automated phenotyping for this wide collection of varieties by applying precision phenotyping through 3D scan and point cloud library-based methods. Combining this data with 127,631 informative SNPs identified by genotyping-by-sequencing could lead to identify further loci associated with this attribute through GWAS.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marco Meneses1, Renato Fuentes1, Ignacia Fuentes1, Claudia Muñoz-Espinoza2, Carolina Araya1, Juan Iribarra1, Erika Salazar1, Claudio Meneses3, Katja Herzog4, Patricio Hinrichsen1*

1 Instituto de Investigaciones Agropecuarias, INIA La Platina. Santiago, Chile.
2 Agronomy Faculty, Universidad de Concepción. Chillán, Chile.
3 Agronomy Faculty, P. Universidad Católica de Chile. Santiago, Chile.
4 Julius Kühn-Institut. Institute for Grapevine Breeding. Geilweilerhof, Germany.

Contact the author*

Keywords

Bunch compactness, qPCR, GBS, automated phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Franciacorta DOCG sparkling wine interpretation in relation to wine coming from different areas

Dans la tradition classique, les vins mousseux sont le produit d’assemblage des vins d’origine différent. La choix de la typologie du moussage (brut, extra-brut, dosage zéro, etc.) généralement est une conséquence des résultats organoleptiques atteints à la fin de le période d’affinement en bouteille.

Monitoring grapevine water status using Landsat 8 images: a two-year case study in a Merlot vineyard

Viticulture needs for spatial and temporal information are increasing to improve vineyard management, especially concerning water efficiency. Remote sensing, particularly from satellites, can be a powerful tool to assess vineyard characteristics such as vigor or water status in space-time. In this study, we use Landsat 8, an American Earth observation satellite with six bands from the visible (VIS) to the Short-Wave Infrared (SWIR) domains with 30m spatial resolution and two thermal bands with 100m spatial resolution.

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

Characterization and biological effects of extracts from winery by-products

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.