terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Abstract

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.
A collection of 116 genotypes composed by 24 wine, 56 table and 26 mixed usage varieties was characterized over two seasons measuring several traits determining Compactness Indexes (CI), as proposed in literature. CI-18 performed the best on this collection and genotypes with extreme values with loose and dense bunches were further studied (n = 10 each group). RNA of these samples was collected at key developmental stages to study the expression of VvUCC1, VvGRF4 and other genes associated to this trait. We also evaluated the performance of automated phenotyping for this wide collection of varieties by applying precision phenotyping through 3D scan and point cloud library-based methods. Combining this data with 127,631 informative SNPs identified by genotyping-by-sequencing could lead to identify further loci associated with this attribute through GWAS.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marco Meneses1, Renato Fuentes1, Ignacia Fuentes1, Claudia Muñoz-Espinoza2, Carolina Araya1, Juan Iribarra1, Erika Salazar1, Claudio Meneses3, Katja Herzog4, Patricio Hinrichsen1*

1 Instituto de Investigaciones Agropecuarias, INIA La Platina. Santiago, Chile.
2 Agronomy Faculty, Universidad de Concepción. Chillán, Chile.
3 Agronomy Faculty, P. Universidad Católica de Chile. Santiago, Chile.
4 Julius Kühn-Institut. Institute for Grapevine Breeding. Geilweilerhof, Germany.

Contact the author*

Keywords

Bunch compactness, qPCR, GBS, automated phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.