terclim by ICS banner
IVES 9 IVES Conference Series 9 New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

Abstract

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.

We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

The overall data allowed us to propose a novel regulatory mechanism correlating AGL11 haplotype assortment and seedlessness class, suggesting potential applications in grapevine breeding for seedlessness and fruit size optimization.

With the aim to validate in planta the proposed regulatory mechanism, we are working to stable transform ‘microvine’ plants for producing a truncated or inactivated AGL11 protein. We first demonstrated the ability of embryogenic calli, obtained from ‘microvine’ anthers collection and culture, to regenerate embryos capable of germinating and sprouting into a new plant. The use of ‘microvine’ as a model system offers promising outcomes for functional gene characterization, benefiting viticulture genetic improvement and seedless table grape cultivation.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Alessandra Amato1*, Maria Francesca Cardone2, Oscar Bellon1, Lucia Rosaria Forleo2, Margherita D’Amico2, Carlo Bergamini2, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Turi, Bari, Italy

Contact the author*

Keywords

Table grape, Seedlessness, AGL11, Regulatory mechanism, Microvine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Dual mode of action of grape cane extracts against Botrytis cinerea

Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea

Analysis of vineyard soil after mulching with municipal solid waste (MSW)-compost

The use of compost as amendment in agriculture is a well-established practice, strongly recommended for numerous benefits.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

Natural variability and vine-growers behaviour

Le vigneron est confronté à une variabilité naturelle omniprésente, liée au millésime et aux facteurs pédoclimatiques. Depuis 10 ans, en Champagne, la relation qu’entretient le vigneron avec l’espace a évolué. Les exemples d’entreprises collectives à vocation territoriale se sont multipliés : gestion de l’hydraulique viticole, maillages de groupements de conseil viticole (Magister), sites en confusion sexuelle, réseau maturation, analyses de sols par secteur, …

Qualitative modelling of factors influencing the development of Black rot, for the prediction of damage to bunches

Vines are one of the most pesticide-intensive crops in France, and reducing their use is a major challenge for both the environment and human health.