terclim by ICS banner
IVES 9 IVES Conference Series 9 New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

Abstract

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.

We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

The overall data allowed us to propose a novel regulatory mechanism correlating AGL11 haplotype assortment and seedlessness class, suggesting potential applications in grapevine breeding for seedlessness and fruit size optimization.

With the aim to validate in planta the proposed regulatory mechanism, we are working to stable transform ‘microvine’ plants for producing a truncated or inactivated AGL11 protein. We first demonstrated the ability of embryogenic calli, obtained from ‘microvine’ anthers collection and culture, to regenerate embryos capable of germinating and sprouting into a new plant. The use of ‘microvine’ as a model system offers promising outcomes for functional gene characterization, benefiting viticulture genetic improvement and seedless table grape cultivation.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Alessandra Amato1*, Maria Francesca Cardone2, Oscar Bellon1, Lucia Rosaria Forleo2, Margherita D’Amico2, Carlo Bergamini2, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Turi, Bari, Italy

Contact the author*

Keywords

Table grape, Seedlessness, AGL11, Regulatory mechanism, Microvine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Highlighting the several chemical situations of Dimethyl sulfide in wine

Dimethyl sulfide (DMS) is a compound that accumulate in wine for the early years of ageing 1. During this stage, which is often carried out in the bottle, the environmental conditions are conducive to the release of DMS from its precursors, already present in grapes2

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.