terclim by ICS banner
IVES 9 IVES Conference Series 9 New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

Abstract

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.

We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

The overall data allowed us to propose a novel regulatory mechanism correlating AGL11 haplotype assortment and seedlessness class, suggesting potential applications in grapevine breeding for seedlessness and fruit size optimization.

With the aim to validate in planta the proposed regulatory mechanism, we are working to stable transform ‘microvine’ plants for producing a truncated or inactivated AGL11 protein. We first demonstrated the ability of embryogenic calli, obtained from ‘microvine’ anthers collection and culture, to regenerate embryos capable of germinating and sprouting into a new plant. The use of ‘microvine’ as a model system offers promising outcomes for functional gene characterization, benefiting viticulture genetic improvement and seedless table grape cultivation.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Alessandra Amato1*, Maria Francesca Cardone2, Oscar Bellon1, Lucia Rosaria Forleo2, Margherita D’Amico2, Carlo Bergamini2, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Turi, Bari, Italy

Contact the author*

Keywords

Table grape, Seedlessness, AGL11, Regulatory mechanism, Microvine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics