terclim by ICS banner
IVES 9 IVES Conference Series 9 New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

Abstract

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.

We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

The overall data allowed us to propose a novel regulatory mechanism correlating AGL11 haplotype assortment and seedlessness class, suggesting potential applications in grapevine breeding for seedlessness and fruit size optimization.

With the aim to validate in planta the proposed regulatory mechanism, we are working to stable transform ‘microvine’ plants for producing a truncated or inactivated AGL11 protein. We first demonstrated the ability of embryogenic calli, obtained from ‘microvine’ anthers collection and culture, to regenerate embryos capable of germinating and sprouting into a new plant. The use of ‘microvine’ as a model system offers promising outcomes for functional gene characterization, benefiting viticulture genetic improvement and seedless table grape cultivation.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Alessandra Amato1*, Maria Francesca Cardone2, Oscar Bellon1, Lucia Rosaria Forleo2, Margherita D’Amico2, Carlo Bergamini2, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), Turi, Bari, Italy

Contact the author*

Keywords

Table grape, Seedlessness, AGL11, Regulatory mechanism, Microvine

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

The research was carried out in the ‘Chianti Classico’ area and it was part of the ‘Chianti Classico 2000’ research project. The performances ‘Sangiovese’ grapevine

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.