terclim by ICS banner
IVES 9 IVES Conference Series 9 Melatonin priming retards fungal decay in postharvest table grapes 

Melatonin priming retards fungal decay in postharvest table grapes 

Abstract

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.

Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown. This work aimed to evaluate the effects of melatonin priming in fungal decay progression in postharvest table grapes (Vitis vinifera L. cv. ‘Red Globe’ and ‘Sugra 48’). Melatonin-treated grapes clearly presented lower levels of fungal decay incidence and symptom severity. DNA sequencing putatively identified three fungal species in postharvest grapes: Penicillium expansum, Penicillium crustosum and Cladosporium cladosporioides. While MDA and total anthocyanin content presented no altered levels due to melatonin treatment, phytoalexins´ profile significantly changed (e.g. trans-resveratrol, trans-piceid). Recent untargeted metabolomics data suggests that phenylpropanoid pathway is being remodelled under melatonin treatment (e.g gallic acid, catechin gallate, specific anthocyanins). RNA extraction and sequencing is being conducted to integrate these metabolic results with molecular data. Altogether, results indicate that melatonin priming leads to an effective response to fungal decay in table grapes by modulating secondary metabolism involved in defense. Ultimately, this work will clarify mechanistic processes regarding this innovative priming agent that may also have a positive impact on nutritional quality of fruits.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Paes 1, Florent Weiller1,  Patrícia Pardal1,  Vicent Leclère2, Inês Diniz3, Helena Gaspar1, Aziz Aziz2, Gianmaria Califano1, Ana Margarida Fortes1*

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande 1749-016, Lisbon, Portugal
2 University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE Reims 51100, France
3 Linking Landscape, Environment, Agriculture and Food (LEAF), TERRA—Associated Laboratory for the Sustainability of Land Use and Ecosystem Services, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda 1349-017 Lisbon, Portugal

Contact the author*

Keywords

melatonin priming, postharvest, table grapes, fungal decay, fruit quality

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

Mapping aromatic profiles of Chardonnay and Sangiovese wines in grafting combination with new rootstocks

Rootstocks play a key role in the adaptation of grapevine to environmental conditions, affecting phenology, vigour, yield and grape quality.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Anthocyanins, flavonols and hydroxycinnamates of eight vitis vinifera cultivars from the balearic islands

In 2008 the anthocyanin, flavonol and hydroxycinnamate (HCT) contents of the skins of five coloured berry cultivars (‘Escursac’, ‘Esperó de Gall’, ‘Galmeter’, ‘Valent negre’ and ‘Vinater negre’), of two white cultivars (‘Argamussa’ and ‘Prensal blanc’) and of one weakly rose cultivar (‘Giró ros’), native from Balearic Islands, were characterized.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.