terclim by ICS banner
IVES 9 IVES Conference Series 9 Melatonin priming retards fungal decay in postharvest table grapes 

Melatonin priming retards fungal decay in postharvest table grapes 

Abstract

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.

Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown. This work aimed to evaluate the effects of melatonin priming in fungal decay progression in postharvest table grapes (Vitis vinifera L. cv. ‘Red Globe’ and ‘Sugra 48’). Melatonin-treated grapes clearly presented lower levels of fungal decay incidence and symptom severity. DNA sequencing putatively identified three fungal species in postharvest grapes: Penicillium expansum, Penicillium crustosum and Cladosporium cladosporioides. While MDA and total anthocyanin content presented no altered levels due to melatonin treatment, phytoalexins´ profile significantly changed (e.g. trans-resveratrol, trans-piceid). Recent untargeted metabolomics data suggests that phenylpropanoid pathway is being remodelled under melatonin treatment (e.g gallic acid, catechin gallate, specific anthocyanins). RNA extraction and sequencing is being conducted to integrate these metabolic results with molecular data. Altogether, results indicate that melatonin priming leads to an effective response to fungal decay in table grapes by modulating secondary metabolism involved in defense. Ultimately, this work will clarify mechanistic processes regarding this innovative priming agent that may also have a positive impact on nutritional quality of fruits.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Paes 1, Florent Weiller1,  Patrícia Pardal1,  Vicent Leclère2, Inês Diniz3, Helena Gaspar1, Aziz Aziz2, Gianmaria Califano1, Ana Margarida Fortes1*

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande 1749-016, Lisbon, Portugal
2 University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE Reims 51100, France
3 Linking Landscape, Environment, Agriculture and Food (LEAF), TERRA—Associated Laboratory for the Sustainability of Land Use and Ecosystem Services, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda 1349-017 Lisbon, Portugal

Contact the author*

Keywords

melatonin priming, postharvest, table grapes, fungal decay, fruit quality

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement de la vigne et dans la spatialisation parcellaire

La mesure de la résistivité électrique des sols est une technique non destructive, spatialement intégrante, utilisée depuis peu en viticulture. L’utilisation d’appareils de mesures performant et de logiciels adaptés permet de traiter les données afin de pouvoir visualiser en deux ou trois dimensions les variations de textures ou d’humidité d’un sol.

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.