terclim by ICS banner
IVES 9 IVES Conference Series 9 Melatonin priming retards fungal decay in postharvest table grapes 

Melatonin priming retards fungal decay in postharvest table grapes 

Abstract

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.

Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown. This work aimed to evaluate the effects of melatonin priming in fungal decay progression in postharvest table grapes (Vitis vinifera L. cv. ‘Red Globe’ and ‘Sugra 48’). Melatonin-treated grapes clearly presented lower levels of fungal decay incidence and symptom severity. DNA sequencing putatively identified three fungal species in postharvest grapes: Penicillium expansum, Penicillium crustosum and Cladosporium cladosporioides. While MDA and total anthocyanin content presented no altered levels due to melatonin treatment, phytoalexins´ profile significantly changed (e.g. trans-resveratrol, trans-piceid). Recent untargeted metabolomics data suggests that phenylpropanoid pathway is being remodelled under melatonin treatment (e.g gallic acid, catechin gallate, specific anthocyanins). RNA extraction and sequencing is being conducted to integrate these metabolic results with molecular data. Altogether, results indicate that melatonin priming leads to an effective response to fungal decay in table grapes by modulating secondary metabolism involved in defense. Ultimately, this work will clarify mechanistic processes regarding this innovative priming agent that may also have a positive impact on nutritional quality of fruits.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Maria Paes 1, Florent Weiller1,  Patrícia Pardal1,  Vicent Leclère2, Inês Diniz3, Helena Gaspar1, Aziz Aziz2, Gianmaria Califano1, Ana Margarida Fortes1*

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande 1749-016, Lisbon, Portugal
2 University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE Reims 51100, France
3 Linking Landscape, Environment, Agriculture and Food (LEAF), TERRA—Associated Laboratory for the Sustainability of Land Use and Ecosystem Services, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda 1349-017 Lisbon, Portugal

Contact the author*

Keywords

melatonin priming, postharvest, table grapes, fungal decay, fruit quality

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc).

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Re-examination and meta-analysis of previous research as a tool to evaluate the suitability of rootstocks in adaptation to global change. A study case from Spanish viticulture

Meta-analysis (MA) is a method that allows statistical synthesis of the results of several similar individual studies (Figure 1). This term was introduced by Glass in 1976 as a useful tool for the scientific community to pool and summarise the enormous amount of information collected in the literature.

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.