terclim by ICS banner
IVES 9 IVES Conference Series 9 Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Abstract

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters. To deepen the understanding on alterations induced by B. cinerea on intact grape VOCs profile, berries from Sangiovese and Corvina cultivars were collected and analysed by SPME-GC-MS as such and following artificial inoculation with a spore suspension of B. cinerea (10 μl, 105 spores ml-1) or mock inoculation by using the same volume of sterile growth medium (control). Preliminary results have shown that high levels of a set of primary and secondary alcohols appeared to be emitted by inoculated berries. Some of these molecules are already reported as correlated with B. cinerea infection, while others are not mentioned as infection markers yet. Moreover, the dynamics of the emission of some of these compounds during the in vitro development of B. cinerea cultures have also been studied. Setting up sensors capable of detecting the identified volatile markers in the dehydration chambers represents an ambitious goal for reducing spoilage and grape losses via targeted interventions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Emilio Nepi1*, Claudia Pisuttu2, Cristina Nali2, Elige Salame1, Pietro Tonutti1, Stefano Brizzolara1

1Crop Science Research Center, Scuola Superiore Sant’Anna di Studi Universitari, Piazza Martiri della Libertà,33,56127, PISA, ITALY
2Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80,56124, PISA, ITALY.(Left-aligned, italic, Arial 9)

Contact the author*

Keywords

grape, grey mould, VOCs, sensors, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grapevine drought tolerant ideotypes to adapt viticulture to climate change

Climate change is challenging the resilience of grapevine, one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach that must include new management strategies, increased irrigation efficiency, and the identification of more drought tolerant genotypes.

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Climate change is modifying environmental conditions in all wine-growing areas of the
world.

Assessment of the optimal number of observations in the study of vineyard soil (Rigosol)

A study of soil pH on the experimental field resulted in a high variability of pH on a very small scale. This kind of heterogenity in soil pH have effects on growth of two grapevine varieties on rootstock Kober 5BB

Screening of Italian red wines for quercetin precipitation risk index

Quercetin (Q), a phenolic compound released from grape skins during red wine maceration, has been identified as a source of instability in bottled wines, particularly Sangiovese, due to crystallisation. This phenomenon represents an economic challenge for producers and affects wine clarity and consumer perception.

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.