terclim by ICS banner
IVES 9 IVES Conference Series 9 Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Abstract

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters. To deepen the understanding on alterations induced by B. cinerea on intact grape VOCs profile, berries from Sangiovese and Corvina cultivars were collected and analysed by SPME-GC-MS as such and following artificial inoculation with a spore suspension of B. cinerea (10 μl, 105 spores ml-1) or mock inoculation by using the same volume of sterile growth medium (control). Preliminary results have shown that high levels of a set of primary and secondary alcohols appeared to be emitted by inoculated berries. Some of these molecules are already reported as correlated with B. cinerea infection, while others are not mentioned as infection markers yet. Moreover, the dynamics of the emission of some of these compounds during the in vitro development of B. cinerea cultures have also been studied. Setting up sensors capable of detecting the identified volatile markers in the dehydration chambers represents an ambitious goal for reducing spoilage and grape losses via targeted interventions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Emilio Nepi1*, Claudia Pisuttu2, Cristina Nali2, Elige Salame1, Pietro Tonutti1, Stefano Brizzolara1

1Crop Science Research Center, Scuola Superiore Sant’Anna di Studi Universitari, Piazza Martiri della Libertà,33,56127, PISA, ITALY
2Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80,56124, PISA, ITALY.(Left-aligned, italic, Arial 9)

Contact the author*

Keywords

grape, grey mould, VOCs, sensors, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

First application of an original methodology created to overcome conflicts between stakeholders in an important wine-growing territory: methodology, results, and perspectives in the application of sustainability EME4.1C

Considering the previous research and activities, also, on Sustainability EME4.1C which, as widely known, considers in a harmonious chain all the factors material, immaterial, moral and spiritual related to all aspects environmental, economic, social, existential, relational, ethical, technical and “MetaEthic” indexed 4.1C

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Do natural wines differ from conventionally-produced wines?

In recent years, consumer awareness for consuming healthy and environmental sustainability products has considerably increased [1]. In an ever-changing and highly competitive environment such as the wine sector, production of wines without sulfites, or biodynamic, organic or vegan wines, has experienced an important increase to meet the new needs of consumers [2,3]. Beyond these categories of regulated products, a new concept has emerged: natural wines (NW), for which there is not an established definition or legal regulation. Rather, producers have a personal idea of naturalness under the premise of applying minimal intervention from grape to wine production [4]. In this context, it is hypothesized that self-defined natural wines are different from conventional wines (CW) in their sensory and chemical profile. The predicament of natural wine is based on anecdotic declarations and assumes that minimal intervention guarantees the production of wines with organoleptic properties able to express the “terroir” and thus promote wine diversity, plurality and sensory typicity against the risk of standardization of CW.