terclim by ICS banner
IVES 9 IVES Conference Series 9 Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Abstract

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters. To deepen the understanding on alterations induced by B. cinerea on intact grape VOCs profile, berries from Sangiovese and Corvina cultivars were collected and analysed by SPME-GC-MS as such and following artificial inoculation with a spore suspension of B. cinerea (10 μl, 105 spores ml-1) or mock inoculation by using the same volume of sterile growth medium (control). Preliminary results have shown that high levels of a set of primary and secondary alcohols appeared to be emitted by inoculated berries. Some of these molecules are already reported as correlated with B. cinerea infection, while others are not mentioned as infection markers yet. Moreover, the dynamics of the emission of some of these compounds during the in vitro development of B. cinerea cultures have also been studied. Setting up sensors capable of detecting the identified volatile markers in the dehydration chambers represents an ambitious goal for reducing spoilage and grape losses via targeted interventions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Emilio Nepi1*, Claudia Pisuttu2, Cristina Nali2, Elige Salame1, Pietro Tonutti1, Stefano Brizzolara1

1Crop Science Research Center, Scuola Superiore Sant’Anna di Studi Universitari, Piazza Martiri della Libertà,33,56127, PISA, ITALY
2Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80,56124, PISA, ITALY.(Left-aligned, italic, Arial 9)

Contact the author*

Keywords

grape, grey mould, VOCs, sensors, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Socioeconomic impact of the LIFE Climawin project from the perspective of employees

This study examines, from the perspective of the employees at Bosque de Matasnos—a demonstrative winery participating in the LIFE Climawin project—the socioeconomic impact and potential contributions of the initiative to the wine sector and the sustainable development of the Ribera del Duero region in Spain.

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

“Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems. METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.