terclim by ICS banner
IVES 9 IVES Conference Series 9 Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Abstract

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters. To deepen the understanding on alterations induced by B. cinerea on intact grape VOCs profile, berries from Sangiovese and Corvina cultivars were collected and analysed by SPME-GC-MS as such and following artificial inoculation with a spore suspension of B. cinerea (10 μl, 105 spores ml-1) or mock inoculation by using the same volume of sterile growth medium (control). Preliminary results have shown that high levels of a set of primary and secondary alcohols appeared to be emitted by inoculated berries. Some of these molecules are already reported as correlated with B. cinerea infection, while others are not mentioned as infection markers yet. Moreover, the dynamics of the emission of some of these compounds during the in vitro development of B. cinerea cultures have also been studied. Setting up sensors capable of detecting the identified volatile markers in the dehydration chambers represents an ambitious goal for reducing spoilage and grape losses via targeted interventions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Emilio Nepi1*, Claudia Pisuttu2, Cristina Nali2, Elige Salame1, Pietro Tonutti1, Stefano Brizzolara1

1Crop Science Research Center, Scuola Superiore Sant’Anna di Studi Universitari, Piazza Martiri della Libertà,33,56127, PISA, ITALY
2Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80,56124, PISA, ITALY.(Left-aligned, italic, Arial 9)

Contact the author*

Keywords

grape, grey mould, VOCs, sensors, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Wine tourism as a catalyst for sustainable competitive advantage: unraveling the role of winery image and reputation

This study examines the impact of wine tourism development on the sustainable competitive advantage of Spanish wineries, while also exploring the mediating roles of winery image and winery reputation in this relationship.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Identification and quantification of c-glucosidic ellagitannins and their derivative in red wine aged in oak barrels

The C-glycosidic ellagitannins constitute a subclass of hydrolyzable tannins of remarkable structural diversity. In this work we first achieved the hemisynthesis of flavano-ellagitannins, then we used them to develop a new efficient detection and quantification procedure for the C-glycosidic ellagitannins as well as flavano-ellagitannins.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…