terclim by ICS banner
IVES 9 IVES Conference Series 9 Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

Abstract

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters. To deepen the understanding on alterations induced by B. cinerea on intact grape VOCs profile, berries from Sangiovese and Corvina cultivars were collected and analysed by SPME-GC-MS as such and following artificial inoculation with a spore suspension of B. cinerea (10 μl, 105 spores ml-1) or mock inoculation by using the same volume of sterile growth medium (control). Preliminary results have shown that high levels of a set of primary and secondary alcohols appeared to be emitted by inoculated berries. Some of these molecules are already reported as correlated with B. cinerea infection, while others are not mentioned as infection markers yet. Moreover, the dynamics of the emission of some of these compounds during the in vitro development of B. cinerea cultures have also been studied. Setting up sensors capable of detecting the identified volatile markers in the dehydration chambers represents an ambitious goal for reducing spoilage and grape losses via targeted interventions.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Emilio Nepi1*, Claudia Pisuttu2, Cristina Nali2, Elige Salame1, Pietro Tonutti1, Stefano Brizzolara1

1Crop Science Research Center, Scuola Superiore Sant’Anna di Studi Universitari, Piazza Martiri della Libertà,33,56127, PISA, ITALY
2Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80,56124, PISA, ITALY.(Left-aligned, italic, Arial 9)

Contact the author*

Keywords

grape, grey mould, VOCs, sensors, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.