terclim by ICS banner
IVES 9 IVES Conference Series 9 NIR based sensometric approach for consumer preference evaluation

NIR based sensometric approach for consumer preference evaluation

Abstract

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy. The FT-NIR spectrophotometer used for this purpose is a TANGO (Bruker, Germany). The chemometric analyses were performed using the statistical software R version 4.1.2. The hedonic testing was performed using a 9-point hedonic scale which is the most widely used scale for measuring food acceptability. The NIR data sets were combined with the chemical, textural, and sensorial data to create multivariate models using interval partial least squares (iPLS) regressions or artificial neural networks (ANNs). The models produced in this way are applied to the spectra of samples that have undergone sensory analysis to predict their composition. This procedure enables non-destructive sensory analysis of new samples, as a single NIR spectrum is sufficient to quantify consumer appreciation and determine the chemical and physical characteristics of each berry. This information can then be used to identify the most suitable combinations for each target panel. Consumers could access this information via a QR code on the grape box, allowing them to select the perfect grape for their preferences.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teodora Basile1*, Lucia Rosaria Forleo1, Rocco Perniola1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Carlo Bergamini1, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy

Contact the author*

Keywords

Vitis vinifera, NIR machine learning; prediction model, sensory analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain.

Développement du concept d’Appellation d’Origine Contrôlée et d’Indication Géographique

L’identification des produits par le nom de la ville, de la région, de la province d’origine d’un produit tend aujourd’hui à se développer partout dans le monde et notamment dans le secteur agro-alimentaire, mais aussi dans les secteurs des produits artisanaux.

austrianvineyards.com: online viewer of all designations of Austrian wine

To digitally record and present all the origins of Austrian wines in the same perfect and clear way was the motivation for the Austrian Wine Marketing Board (Austrian Wine) to start with the project in 2018. In June 2021 the results were presented to the public in an online viewer showing all the designations of Austrian wine, available at https://austrianvineyards.com in a largely barrier-free manner. The online viewer provides tailored individual maps fitted to the respective zoom level. The smallest unit of wine-origins in Austria is called Ried and is displayed in a plot-specific manner highlighting areas under vine. Information on the Ried include administrative district, winegrowing municipality, cadastral municipality, large collective vineyard site, specific winegrowing region, generic winegrowing region, winegrowing area and, in many cases, an illustrative picture. Complementary data on the size, elevation (minimum-maximum), orientation (in 8 sectors plus flat) and gradient (minimum, maximum, average) are based on the area under vine according to the EU’s Integrated Administration and Control System. Additional information covers climate data. The diagrams are taken from the monthly breakdown of data in the annals of the Central Institute for Meteorology and Geodynamics, Austria provide a display of values for air temperature, precipitation, and sunshine hours for the reference year and the long-term average. Seasonal aggregated data on temperature, precipitation, and sunshine hours complete the display. Short descriptions with emphasis on geology and soil, field name in historical maps, etymology of the denomination, and main planted variety complements the available information for the main designations in the online viewer. These descriptions are compiled by winegrowers, geologists, historians, and journalists. All the information and data can be extracted to a pdf-file. Printed vineyard maps are also available. Missing content regarding wine origins in Styria will be completed in winter 2021/22.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.