terclim by ICS banner
IVES 9 IVES Conference Series 9 NIR based sensometric approach for consumer preference evaluation

NIR based sensometric approach for consumer preference evaluation

Abstract

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy. The FT-NIR spectrophotometer used for this purpose is a TANGO (Bruker, Germany). The chemometric analyses were performed using the statistical software R version 4.1.2. The hedonic testing was performed using a 9-point hedonic scale which is the most widely used scale for measuring food acceptability. The NIR data sets were combined with the chemical, textural, and sensorial data to create multivariate models using interval partial least squares (iPLS) regressions or artificial neural networks (ANNs). The models produced in this way are applied to the spectra of samples that have undergone sensory analysis to predict their composition. This procedure enables non-destructive sensory analysis of new samples, as a single NIR spectrum is sufficient to quantify consumer appreciation and determine the chemical and physical characteristics of each berry. This information can then be used to identify the most suitable combinations for each target panel. Consumers could access this information via a QR code on the grape box, allowing them to select the perfect grape for their preferences.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teodora Basile1*, Lucia Rosaria Forleo1, Rocco Perniola1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Carlo Bergamini1, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy

Contact the author*

Keywords

Vitis vinifera, NIR machine learning; prediction model, sensory analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).

Interactions « Terroir x Vigne » : facteurs de maîtrise du micro-environnement et de la physiologie de la plante en rapport avec le niveau de maturité et les éléments de typicité

Le vigneron européen est de plus en plus à la recherche de la valorisation de son terroir par la personnalisation de la typicité de ses produits. Dans ce contexte, il est apparu depuis longtemps que la part des facteurs technologiques ou humains est d’une importance capitale face aux conditions de l’envirormement naturel. Le terroir se construit plus qu’il ne se subit.

Grape genetic research in the age of pangenomes

Combined improvements in sequencing technologies and assembly algorithms have led to staggering improvements in the quality of grape genome assemblies.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.