terclim by ICS banner
IVES 9 IVES Conference Series 9 NIR based sensometric approach for consumer preference evaluation

NIR based sensometric approach for consumer preference evaluation

Abstract

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy. The FT-NIR spectrophotometer used for this purpose is a TANGO (Bruker, Germany). The chemometric analyses were performed using the statistical software R version 4.1.2. The hedonic testing was performed using a 9-point hedonic scale which is the most widely used scale for measuring food acceptability. The NIR data sets were combined with the chemical, textural, and sensorial data to create multivariate models using interval partial least squares (iPLS) regressions or artificial neural networks (ANNs). The models produced in this way are applied to the spectra of samples that have undergone sensory analysis to predict their composition. This procedure enables non-destructive sensory analysis of new samples, as a single NIR spectrum is sufficient to quantify consumer appreciation and determine the chemical and physical characteristics of each berry. This information can then be used to identify the most suitable combinations for each target panel. Consumers could access this information via a QR code on the grape box, allowing them to select the perfect grape for their preferences.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teodora Basile1*, Lucia Rosaria Forleo1, Rocco Perniola1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Carlo Bergamini1, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy

Contact the author*

Keywords

Vitis vinifera, NIR machine learning; prediction model, sensory analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

Aroma profile evaluation in whole grape juices

Table grapes (Vitis labrusca and hybrids) are widely cultivated in Brazil [1] due to the climate, their resistance to disease and the way they are consumed and commercialized, either in-natura or for processing, producing whole juices, jams and table wines.

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.