terclim by ICS banner
IVES 9 IVES Conference Series 9 NIR based sensometric approach for consumer preference evaluation

NIR based sensometric approach for consumer preference evaluation

Abstract

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy. The FT-NIR spectrophotometer used for this purpose is a TANGO (Bruker, Germany). The chemometric analyses were performed using the statistical software R version 4.1.2. The hedonic testing was performed using a 9-point hedonic scale which is the most widely used scale for measuring food acceptability. The NIR data sets were combined with the chemical, textural, and sensorial data to create multivariate models using interval partial least squares (iPLS) regressions or artificial neural networks (ANNs). The models produced in this way are applied to the spectra of samples that have undergone sensory analysis to predict their composition. This procedure enables non-destructive sensory analysis of new samples, as a single NIR spectrum is sufficient to quantify consumer appreciation and determine the chemical and physical characteristics of each berry. This information can then be used to identify the most suitable combinations for each target panel. Consumers could access this information via a QR code on the grape box, allowing them to select the perfect grape for their preferences.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Teodora Basile1*, Lucia Rosaria Forleo1, Rocco Perniola1, Flavia Angela Maria Maggiolini1, Margherita D’Amico1, Carlo Bergamini1, Maria Francesca Cardone1

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), via Casamassima 148, 70010 Turi (BA), Italy

Contact the author*

Keywords

Vitis vinifera, NIR machine learning; prediction model, sensory analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes