OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Abstract

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character. 

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors. 

To study the yeasts ability to produce these molecules, a dispersive liquid-liquid microextraction (DLLME) gas chromatography mass spectrometry was developed for their quantification in white wines, synthetic wine and fermented synthetic medium. A mixture of acetone (dispersive solvent) and dichloromethane (extractive solvent) was added to 5 ml of sample. The proposed method showed no matrix effect, a good linearity in enological range (from 10 to 300 μg/L), good recoveries, inter-day precision and good reproducibility. The developed method was applied to the analysis of the capacities of 41 yeast strains to produce terpene compounds in Chardonnay must and in synthetic meidum. Interestingly, the majority of the studied compound has been detected and quantified in the resulting wines. 

This sample-preparation technique is very interesting for high-throughput studies and for economic and environmental reasons because it is fast, easy to operate with a high enrichment, and consumes low volume of organic solvent.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Guillaume Bergler, Michel Brulfert, Anne Ortiz-Julien, Carole Camarasa, Audrey Bloem

Martell-Mumm-Perrier Jouët, Pernod Ricard, Cognac, France 
Lallemand SAS, Blagnac 
UMR SPO, INRA Montpellier 2 place Pierre Viala, 34060 Montpellier, France 

Contact the author

Keywords

DLLME, Terpens, Alcoholic fermentation, Wine yeast 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine. Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant. In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices. The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.

Factors influencing cover crop water competition in vineyards and implications for future drought adaptation

Vineyard water management in Australia is often associated with irrigation in warm and hot climates, but in cooler regions the larger share of the seasonal water demand is met by rainfall.

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.

Shifting wine consumption trends (2019-2024): market dynamics, sustainability, and consumer preferences

This study examined the evolution of wine consumption trends from 2019 to 2024, analyzing market dynamics, sustainability preferences, and generational shifts in consumer behavior.