OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Abstract

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character. 

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors. 

To study the yeasts ability to produce these molecules, a dispersive liquid-liquid microextraction (DLLME) gas chromatography mass spectrometry was developed for their quantification in white wines, synthetic wine and fermented synthetic medium. A mixture of acetone (dispersive solvent) and dichloromethane (extractive solvent) was added to 5 ml of sample. The proposed method showed no matrix effect, a good linearity in enological range (from 10 to 300 μg/L), good recoveries, inter-day precision and good reproducibility. The developed method was applied to the analysis of the capacities of 41 yeast strains to produce terpene compounds in Chardonnay must and in synthetic meidum. Interestingly, the majority of the studied compound has been detected and quantified in the resulting wines. 

This sample-preparation technique is very interesting for high-throughput studies and for economic and environmental reasons because it is fast, easy to operate with a high enrichment, and consumes low volume of organic solvent.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Guillaume Bergler, Michel Brulfert, Anne Ortiz-Julien, Carole Camarasa, Audrey Bloem

Martell-Mumm-Perrier Jouët, Pernod Ricard, Cognac, France 
Lallemand SAS, Blagnac 
UMR SPO, INRA Montpellier 2 place Pierre Viala, 34060 Montpellier, France 

Contact the author

Keywords

DLLME, Terpens, Alcoholic fermentation, Wine yeast 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi. 

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.