OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Abstract

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character. 

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors. 

To study the yeasts ability to produce these molecules, a dispersive liquid-liquid microextraction (DLLME) gas chromatography mass spectrometry was developed for their quantification in white wines, synthetic wine and fermented synthetic medium. A mixture of acetone (dispersive solvent) and dichloromethane (extractive solvent) was added to 5 ml of sample. The proposed method showed no matrix effect, a good linearity in enological range (from 10 to 300 μg/L), good recoveries, inter-day precision and good reproducibility. The developed method was applied to the analysis of the capacities of 41 yeast strains to produce terpene compounds in Chardonnay must and in synthetic meidum. Interestingly, the majority of the studied compound has been detected and quantified in the resulting wines. 

This sample-preparation technique is very interesting for high-throughput studies and for economic and environmental reasons because it is fast, easy to operate with a high enrichment, and consumes low volume of organic solvent.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Guillaume Bergler, Michel Brulfert, Anne Ortiz-Julien, Carole Camarasa, Audrey Bloem

Martell-Mumm-Perrier Jouët, Pernod Ricard, Cognac, France 
Lallemand SAS, Blagnac 
UMR SPO, INRA Montpellier 2 place Pierre Viala, 34060 Montpellier, France 

Contact the author

Keywords

DLLME, Terpens, Alcoholic fermentation, Wine yeast 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates).

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.