OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

Abstract

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character. 

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors. 

To study the yeasts ability to produce these molecules, a dispersive liquid-liquid microextraction (DLLME) gas chromatography mass spectrometry was developed for their quantification in white wines, synthetic wine and fermented synthetic medium. A mixture of acetone (dispersive solvent) and dichloromethane (extractive solvent) was added to 5 ml of sample. The proposed method showed no matrix effect, a good linearity in enological range (from 10 to 300 μg/L), good recoveries, inter-day precision and good reproducibility. The developed method was applied to the analysis of the capacities of 41 yeast strains to produce terpene compounds in Chardonnay must and in synthetic meidum. Interestingly, the majority of the studied compound has been detected and quantified in the resulting wines. 

This sample-preparation technique is very interesting for high-throughput studies and for economic and environmental reasons because it is fast, easy to operate with a high enrichment, and consumes low volume of organic solvent.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Guillaume Bergler, Michel Brulfert, Anne Ortiz-Julien, Carole Camarasa, Audrey Bloem

Martell-Mumm-Perrier Jouët, Pernod Ricard, Cognac, France 
Lallemand SAS, Blagnac 
UMR SPO, INRA Montpellier 2 place Pierre Viala, 34060 Montpellier, France 

Contact the author

Keywords

DLLME, Terpens, Alcoholic fermentation, Wine yeast 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of soil characteristics on grape composition of Tempranillo variety under different weather conditions in Rioja DOCa (Spain)

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

Effects of winemaking variables on the chemical and sensory quality of Schiava wines up to one year storage in bottle

The interactive effects of three major enological variables were evaluated on the quality of Schiava wine up to one year of storage in bottle.

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,