OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Fructose implication in the Sotolon formation in fortified wines: preliminary results

Fructose implication in the Sotolon formation in fortified wines: preliminary results

Abstract

Sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) is a naturally occurring odorant compound with a strong caramel/spice-like scent, present in many foodstuffs. Its positive contribution for the aroma of different fortified wines such as Madeira, Port and Sherry is recognized. In contrast, it is also known to be responsible for the off-flavor character of prematurely aged dry white wines. The formation mechanisms of sotolon in wine are still not well elucidated, particularly in Madeira wines, which are submitted to thermal processing during its traditional ageing. The sotolon formation in these wines has been related to sugar degradation mechanisms, particularly from fructose [1].

The present study focuses on the LC-MS/MS quantification results of sotolon [2] in model wines and serves as preliminary results in a currently ongoing project, with the aim to elucidate the main formation pathways of sotolon in fortified wines. Different combinations of fructose and amino acids in synthetic wine (base wine model – 6 g/L of tartaric acid, 18 % ethanol (v/v) and pH adjusted to 3.5) were tested and submitted to forced ageing at 70 °C for 1 month. The results showed that fructose levels as low as 1 g/L are enough to produce sotolon levels higher than the odour detection threshold preliminary found for Madeira wines [3]. Results also showed that cysteine somehow hindered the sotolon formation in model wines.

Acknowledgements:

Vanda Pereira is thankful to ARDITI (Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação) for funding her research grant through the project M1420-09-5369-FSE-000001. This work was financed by ERDF funds and National Funds through the FCT (Fundação para a Ciência e Tecnologia) under the projects UID/CTM/50025/2013 and M1420-01-0247-FEDER-000020 (IMPACT III).

References:

[1]. Pereira V, Santos M, Cacho J, Marques JC. Assessment of the development of browning, antioxidant activity and volatile organic compounds in thermally processed sugar model wines. LWT. 2017, 75:719–26.
[2]. Pereira V, Leça JM, Gaspar JM, Pereira AC, Marques JC. Rapid Determination of Sotolon in Fortified Wines Using a Miniaturized Liquid-Liquid Extraction Followed by LC-MS/MS Analysis. J Anal Methods Chem. 2018: Article ID 4393040, 7 pgs.
[3]. Gaspar JM, Pereira V, Marques JC. Odor detection threshold (ODT) and odor rejection threshold (ORT) determination of sotolon in Madeira wine: A preliminary study. AIMS Agriculture and Food 2018, 3: 172-180.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Vanda Pereira, João M. Gaspar , Qianzhu Zhao , Ana I. Freitas , José C. Marques 

Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal. 
Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong, China 
I3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal 

Contact the author

Keywords

sweet wines, thermal processing, wine ageing, wine models

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.