Terroir 2016 banner
IVES 9 IVES Conference Series 9 The soil biodiversity as a support to environmental sustainability in vineyard

The soil biodiversity as a support to environmental sustainability in vineyard

Abstract

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality. The edaphic communities, in particular, ensure plant development in natural habitats and cultivated land although the human intervention may disturbs their stability and equilibrium. The assessment of soil biodiversity, quite complex for the huge number of edaphic species and the limited availability of simple and inexpensive methods, is useful for estimating soil biological quality and the impact of the human activity. The QBS-ar method assess biodiversity and biological quality of the soil evaluating the microarthropods’ level of adaptation to the soil life. By applying this method, a study was carried out to assess soil biodiversity in vineyards, observe the variability between plots and estimate the influence of soil physical and chemical characteristics on edaphic community.

The study started in 2015 in the Barolo winegrowing area (north-west Italy). The area is characterized by soil homogeneity but wide geospatial heterogeneity, which is why the commercial vineyards under observation were also characterized by this point of view. For each vineyard pedological survey were executed analysing the soil profile, the chemical and physical composition, the soil hydrological constants and the microarthopods community.

In Barolo area, the abundance of individuals and the QBS-ar index showed diversity among the vineyards but were not affected by the weather variability or geospatial variability. It emerged a possible correlation with the physical characteristics of the soil, such as density and porosity; these properties are dependent on the soil texture but they also vary depending on the management practices. The index reveals a good potential for rapid assessment of elements linked to environmental quality although many aspects still remain to be defined including, for example, the relationships with crop management.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Elena MANIA (1), Mauro PIAZZI (2), Luca GANGEMI (1), Andrea Edmondo ROSSI (2), Fabrizio CASSI (2), Silvia GUIDONI (1)

(1) Departement of Agriculture, Forestry and Food Science, University of Turin, (I) – Lgo Braccini 2, 10095 Grugliasco
(2) Timesis srl (I), Via Niccolini 7, San Giuliano Terme

Contact the author

Keywords

soil quality, soil hydrology, micro-arthropods, QBS-ar, Barolo

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of these compounds highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and free norisprenoids (2.60 to 11.46 μg/kg FW).

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit

Cascading effects of spring weather conditions into grape berry ripening

The effects of climate change on viticulture are complex due to interactions among factors and cascading effects.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.