Terroir 2016 banner
IVES 9 IVES Conference Series 9 The soil biodiversity as a support to environmental sustainability in vineyard

The soil biodiversity as a support to environmental sustainability in vineyard

Abstract

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality. The edaphic communities, in particular, ensure plant development in natural habitats and cultivated land although the human intervention may disturbs their stability and equilibrium. The assessment of soil biodiversity, quite complex for the huge number of edaphic species and the limited availability of simple and inexpensive methods, is useful for estimating soil biological quality and the impact of the human activity. The QBS-ar method assess biodiversity and biological quality of the soil evaluating the microarthropods’ level of adaptation to the soil life. By applying this method, a study was carried out to assess soil biodiversity in vineyards, observe the variability between plots and estimate the influence of soil physical and chemical characteristics on edaphic community.

The study started in 2015 in the Barolo winegrowing area (north-west Italy). The area is characterized by soil homogeneity but wide geospatial heterogeneity, which is why the commercial vineyards under observation were also characterized by this point of view. For each vineyard pedological survey were executed analysing the soil profile, the chemical and physical composition, the soil hydrological constants and the microarthopods community.

In Barolo area, the abundance of individuals and the QBS-ar index showed diversity among the vineyards but were not affected by the weather variability or geospatial variability. It emerged a possible correlation with the physical characteristics of the soil, such as density and porosity; these properties are dependent on the soil texture but they also vary depending on the management practices. The index reveals a good potential for rapid assessment of elements linked to environmental quality although many aspects still remain to be defined including, for example, the relationships with crop management.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Elena MANIA (1), Mauro PIAZZI (2), Luca GANGEMI (1), Andrea Edmondo ROSSI (2), Fabrizio CASSI (2), Silvia GUIDONI (1)

(1) Departement of Agriculture, Forestry and Food Science, University of Turin, (I) – Lgo Braccini 2, 10095 Grugliasco
(2) Timesis srl (I), Via Niccolini 7, San Giuliano Terme

Contact the author

Keywords

soil quality, soil hydrology, micro-arthropods, QBS-ar, Barolo

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The effects of antioxidants and gas sparging on New Zealand white wines

This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

Enhancing the color traits of ‘Nebbiolo’ and ‘Dolcetto’ grapes: the role of abscisic acid during ripening

The red Italian variety Nebbiolo (Vitis vinifera L.), used in the production of the prestigious Barolo and Barbaresco wines, is renowned for its aromatic and structural complexity but also for its low color intensity.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

In the current viticultural context, global warming leads to advanced and possibly accelerated ripening which can alter the balance among desirable grape quality traits sought for winemaking. Evaluation of genetic material that displays delayed and/or slower ripening could uncover a potential “slow ripening” trait for incorporation into commercial varieties through breeding. In this study, we evaluated a white-fruited selection discovered in the Grape Breeding and Genetics program at E. & J. Gallo Winery that displayed an unusual ripening pattern compared to standard varieties. Vines of the slow-ripening selection did not differ in their visual appearance, water status or gas exchange characteristics compared to vines of its normal-ripening sibling.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.