Terroir 2016 banner
IVES 9 IVES Conference Series 9 Understanding and managing wine production from different terroirs

Understanding and managing wine production from different terroirs

Abstract

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration. Vine phenology and grape ripening is mainly driven by air temperature, but also by soil temperature. Soil provides water and minerals to the vine, in particular nitrogen. Over the past decades, tools have been developed to quantify terroir parameters. Small scale weather stations can yield temperature data at high resolution which can be used to provide refined maps of temperature summations. Models have been developed to predict phenology in relation to temperature. Vine water status can be assessed with a pressure chamber, or by means of carbon isotope discrimination measured on grape sugar (so-called δ13C). Vine nitrogen status can be assessed with the measurement of yeast available nitrogen (YAN). In this way, terroir parameters can not only be measured but also mapped. This approach allows precise vineyard management to optimize terroir expression, through plot selection, the choice of appropriate plant material in relation to soil and climate, vineyard floor management, fertilization and training system.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Cornelis VAN LEEUWEN, Jean-Philippe ROBY and Laure de RESSEGUIER

Bordeaux Sciences Agro, ISVV, UMR EGFV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

terroir, climate, soil, temperature, water status, nitrogen status, phenology, modeling, vineyard management, plant material

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Aims: The aims of the present study were to (1) evaluate the water dynamics of Touriga-Nacional grapevines trained to spur pruned cordon and Guyot systems and (2) assess the effect of variable water availability in a commercial vineyard located in the Demarcated Douro Region (DDR), Portugal.

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

Extraction-modelling approach demonstrates grapevine rooting patterns varies significantly as a result of contrasting ground management and growing environment in cover cropped vineyards

The use of cover crops in viticulture has increased in recent decades as growers seek to reduce herbicide use, improve soil organic matter and biodiversity, and minimize soil-related agronomic issues such as compaction and erosion.