Terroir 2016 banner
IVES 9 IVES Conference Series 9 Understanding and managing wine production from different terroirs

Understanding and managing wine production from different terroirs

Abstract

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration. Vine phenology and grape ripening is mainly driven by air temperature, but also by soil temperature. Soil provides water and minerals to the vine, in particular nitrogen. Over the past decades, tools have been developed to quantify terroir parameters. Small scale weather stations can yield temperature data at high resolution which can be used to provide refined maps of temperature summations. Models have been developed to predict phenology in relation to temperature. Vine water status can be assessed with a pressure chamber, or by means of carbon isotope discrimination measured on grape sugar (so-called δ13C). Vine nitrogen status can be assessed with the measurement of yeast available nitrogen (YAN). In this way, terroir parameters can not only be measured but also mapped. This approach allows precise vineyard management to optimize terroir expression, through plot selection, the choice of appropriate plant material in relation to soil and climate, vineyard floor management, fertilization and training system.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Cornelis VAN LEEUWEN, Jean-Philippe ROBY and Laure de RESSEGUIER

Bordeaux Sciences Agro, ISVV, UMR EGFV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

terroir, climate, soil, temperature, water status, nitrogen status, phenology, modeling, vineyard management, plant material

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Climate change and economic challenge – strategies for vinegrowers, winemakers and wine estates

For wine areas around the world, nature and climate are becoming factors of production whose endowment becomes a stake beyond the traditional economic factors: labor, capital, land. They strongly influence agricultural and environmental conditions for production.

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.