Terroir 2016 banner
IVES 9 IVES Conference Series 9 Understanding and managing wine production from different terroirs

Understanding and managing wine production from different terroirs

Abstract

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration. Vine phenology and grape ripening is mainly driven by air temperature, but also by soil temperature. Soil provides water and minerals to the vine, in particular nitrogen. Over the past decades, tools have been developed to quantify terroir parameters. Small scale weather stations can yield temperature data at high resolution which can be used to provide refined maps of temperature summations. Models have been developed to predict phenology in relation to temperature. Vine water status can be assessed with a pressure chamber, or by means of carbon isotope discrimination measured on grape sugar (so-called δ13C). Vine nitrogen status can be assessed with the measurement of yeast available nitrogen (YAN). In this way, terroir parameters can not only be measured but also mapped. This approach allows precise vineyard management to optimize terroir expression, through plot selection, the choice of appropriate plant material in relation to soil and climate, vineyard floor management, fertilization and training system.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Cornelis VAN LEEUWEN, Jean-Philippe ROBY and Laure de RESSEGUIER

Bordeaux Sciences Agro, ISVV, UMR EGFV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

terroir, climate, soil, temperature, water status, nitrogen status, phenology, modeling, vineyard management, plant material

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Climate change impacts on Douro Region viticulture and adaptation measures

Climate has a significant impact in the success of any agricultural system, with a direct influence on the crops suitability to a given region, interfering on yield and quality and also with the economic sustainability of the productive activity. In the Douro Demarcated Region (RDD), as in most regions of the Mediterranean climate, the scarce precipitation (33% has less than 600 mm per year), and your high variability, associated with high rates of evapotranspiration during the summer, is usually one of the fundamental factors that limit the grapevine development, as well as the production and quality of the harvest. Thus, facing the scenario in temperature changes for the next decades (1.5-2.5°C) and confirming the predictions of precipitation decreases and/or great variability in the occurrence of heat waves and intense rainfall, the consequences for slope stability in mountain viticulture and sustainability of all operations involved, are risks to be taken into account. In this way, a deepest and sustained knowledge regarding the adaptation measures to adverse environmental conditions is of a crucial importance, enabling a more efficient adaptation of plant growth conditions and the optimization of production and quality of the grapevines. The development of this work, carried out in two commercial vineyards, one located in Soutelo do Douro, São João da Pesqueira, Cima Corgo sub-region, and another located in Numão, Vila Nova de Foz Côa, Douro Superior sub-region, it seeks to establish a relationship between climatic elements and physiological, productive and qualitative parameters, as well as to evaluate the effectiveness of adaptation measures, including different types of deficit irrigation (2002-2019) and the application of shading nets (2019-2020) in the physiological, viticultural and oenological behavior in the Touriga Nacional and Moscatel Galego Branco varieties, respectively. The results showed that the application of deficit irrigation allowed to significantly reduce the impact of the adverse weather conditions at key moments in the development of the grapevine, particularly in the period immediately before veráison and maturation, reducing the negative effects on the physiological processes and productivity, without compromise the must quality parameters. On the other hand, the application of shading nets significantly reduced de leaves temperature, allowing to increase the water potential, stomatal conductance and photosynthetic rate of grapes, which was reflected in the yield increase in the 2nd year of the study. For the maturation indicators, higher levels of total acidity, malic acid and assimilable nitrogen were obtained. The last measure presents a huge potential, being essential to carry out more years of trials to obtain stronger conclusions in terms of production parameters, but also in characteristics as important as the grape ripening components and the organoleptic characteristics of wines.

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Caracterización de suelos de la comarca Tacoronte-Acentejo

La comarca Tacoronte-Acentejo, con una extensión cultivada de 2.422 has. concentra un 20% de los viñedos de Canarias.