terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Orals - Oenology, methods of analysis 9 Smoke tainted wine – what now?

Smoke tainted wine – what now?

Abstract

Wines made from grapes exposed to smoke from bushfires that burned during the 2019/20 Australian grape growing season were subjected to various amelioration techniques, including: the addition of activated carbons, molecularly imprinted polymers (MIPs), or a proprietary adsorbent resin (either directly, or following fractionation by membrane filtration); spinning cone column (SCC) distillation; and transformation into spirit or vinegar, via fractional distillation or fermentation by acetic acid bacteria, respectively. The efficacy of treatments was determined by comparing volatile phenols (VPs) and their glycoconjugates, as chemical markers of smoke taint and changes in the intensity of fruit and smoke-related sensory attributes in wines, distillate, and vinegar samples. In brief: activated carbons can remove free and glycosylated VPs from smoke-tainted wines to some extent, without stripping desirable wine aroma and flavour. MIPs were also effective in removing VPs but not VP glycoconjugates. In contrast, adsorbent resin removed both free (<90%) and bound VPs (<30%). However, membrane filtration followed by resin treatment of the resulting permeate removed >95% of VPs. SCC distillation alone cannot remediate smoke taint, but smoke-related attributes were significantly diminished when ‘stripped wine’ was treated with activated carbon and blended with its corresponding condensate. Fractional distillation yielded ‘heart’ distillate fractions that were considered suitable for spirit production. Lastly, the potential for smoke-tainted wine to be transformed into vinegar was also demonstrated. The choice (and success) of each treatment ultimately depends on the extent to which wine is tainted, but the cost of harvesting and processing smoke-affected grapes should be considered when evaluating the economic return of remediation.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Renata Ristic¹, Huo Yiming¹, Ysadora Mirabelli-Montan², Zhang Jin², Kerry Wilkinson²

¹ The University of Adelaide, PMB 1, Glen Osmond, Adelaide, Australia
² University of Adelaide, Waite Campus, PMB 1, Glen Osmond, Urrbrae, Australia

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Enhancing vineyard resilience: three years of weather-based disease modeling in Moldova’s precision viticulture

Due to ongoing climate change, managing vineyard diseases has become increasingly challenging in the Republic of Moldova.

Plastid genomics of Vitis vinifera L. for understanding the molecular basis of  grapevine (Vitis vinifera L.) domestication

The precise molecular mechanisms underlying the domestication of grapevine (Vitis vinifera L.) Are still not fully understood. In the recent years, next-generation sequencing (NGS) of plastid genomes has emerged as a powerful and increasingly effective tool for plant phylogenetics and evolution. To uncover the biological profile of the grapevine domestication process comprehensively, an investigation should encompass both the cultivated varieties (V. vinifera subsp. Vinifera) and their wild ancestors V. vinifera subsp. Sylvestris) across all potential sites of their distribution and domestication.

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Using unmanned aerial vehicle with multispectral camara to efficiently and precisely monitor the incidence of downy mildew and technical maturity of beibinghong (vitis amurensis Rpru.) grapes 

Multispectral unmanned aerial vehicle (UAV) has been successfully applied in monitoring vine vegetative growth, however, there are still potential relationships between remote sensing vegetation indexes (vis) and vine condition or grape quality, so it is worthy a deeper investigation to make a better use of UAV. One of the purposes of the study is to find out vis that could denote the severity of downy mildew (DM), so that precise and differentiated control strategies would be adopted subsequently.

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.