Terroir 2016 banner
IVES 9 IVES Conference Series 9 Can the use of rootstocks enhance terroir?

Can the use of rootstocks enhance terroir?

Abstract

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse. The aim of this study was to determine the influence of different rootstocks and own roots control on sensory and compositional differences in grape berries and resultant wines

Descriptive Sensory Analysis and compositional measures including GCMS were conducted on berries and wines of Vitis vinifera L. cv Shiraz vines grown on own roots or grafted to three different rootstocks (110 Richter, 1103 Paulsen, Schwarzmann). The study was conducted in an experimental rootstock vineyard in the Barossa Valley, South Australia, during two growing seasons (2009/10-2010/11).

Sensory and compositional differences were found in berries and wines from the rootstock treatments and the own roots control that were reflected in the wine quality scores.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Sandra M. OLARTE MANTILLA (1), Cassandra COLLINS (1), Patrick G. ILLAND (2) Catherine M. KIDMAN (1,3), Renata RISTIC (1), Paul K. BOSS (4), Charlotte JORDANS (1) and Susan E. P. BASTIAN (1)

(1) School of Agriculture, Food, & Wine, University of Adelaide, Waite Research Institute, PMB1, Glen Osmond, South Australia 5064, Australia
(2) Patrick IlandWine Promotions Pty Ltd, PO Box 131, Campbelltown, South Australia 5074, Australia
(3) Wynns Coonawarra Estate, Memorial Drive, Coonawarra, SA 5263, Australia
(4) CSIRO Agriculture Flagship, PMB2, Glen Osmond SA 5064, Australia

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Microbial metagenomics of vineyard soils and wine terroir

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.