Terroir 2016 banner
IVES 9 IVES Conference Series 9 Can the use of rootstocks enhance terroir?

Can the use of rootstocks enhance terroir?

Abstract

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse. The aim of this study was to determine the influence of different rootstocks and own roots control on sensory and compositional differences in grape berries and resultant wines

Descriptive Sensory Analysis and compositional measures including GCMS were conducted on berries and wines of Vitis vinifera L. cv Shiraz vines grown on own roots or grafted to three different rootstocks (110 Richter, 1103 Paulsen, Schwarzmann). The study was conducted in an experimental rootstock vineyard in the Barossa Valley, South Australia, during two growing seasons (2009/10-2010/11).

Sensory and compositional differences were found in berries and wines from the rootstock treatments and the own roots control that were reflected in the wine quality scores.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Sandra M. OLARTE MANTILLA (1), Cassandra COLLINS (1), Patrick G. ILLAND (2) Catherine M. KIDMAN (1,3), Renata RISTIC (1), Paul K. BOSS (4), Charlotte JORDANS (1) and Susan E. P. BASTIAN (1)

(1) School of Agriculture, Food, & Wine, University of Adelaide, Waite Research Institute, PMB1, Glen Osmond, South Australia 5064, Australia
(2) Patrick IlandWine Promotions Pty Ltd, PO Box 131, Campbelltown, South Australia 5074, Australia
(3) Wynns Coonawarra Estate, Memorial Drive, Coonawarra, SA 5263, Australia
(4) CSIRO Agriculture Flagship, PMB2, Glen Osmond SA 5064, Australia

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

Influence of the year and the environmental factors on condensed tannins from Cabernet franc grapes

The composition in condensed tannins of the grape berries is essential for the quality of the harvest. Proanthocyanidins have a significant influence on the organoleptic properties of the red wines

Comprendre la sensibilité des cépages, une clé pour la gestion durable de l’esca

Dans le cadre de TerclimPro 2025, Pierre Gastou a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8300

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.