Terroir 2016 banner
IVES 9 IVES Conference Series 9 Can the use of rootstocks enhance terroir?

Can the use of rootstocks enhance terroir?

Abstract

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse. The aim of this study was to determine the influence of different rootstocks and own roots control on sensory and compositional differences in grape berries and resultant wines

Descriptive Sensory Analysis and compositional measures including GCMS were conducted on berries and wines of Vitis vinifera L. cv Shiraz vines grown on own roots or grafted to three different rootstocks (110 Richter, 1103 Paulsen, Schwarzmann). The study was conducted in an experimental rootstock vineyard in the Barossa Valley, South Australia, during two growing seasons (2009/10-2010/11).

Sensory and compositional differences were found in berries and wines from the rootstock treatments and the own roots control that were reflected in the wine quality scores.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Sandra M. OLARTE MANTILLA (1), Cassandra COLLINS (1), Patrick G. ILLAND (2) Catherine M. KIDMAN (1,3), Renata RISTIC (1), Paul K. BOSS (4), Charlotte JORDANS (1) and Susan E. P. BASTIAN (1)

(1) School of Agriculture, Food, & Wine, University of Adelaide, Waite Research Institute, PMB1, Glen Osmond, South Australia 5064, Australia
(2) Patrick IlandWine Promotions Pty Ltd, PO Box 131, Campbelltown, South Australia 5074, Australia
(3) Wynns Coonawarra Estate, Memorial Drive, Coonawarra, SA 5263, Australia
(4) CSIRO Agriculture Flagship, PMB2, Glen Osmond SA 5064, Australia

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.