Terroir 2016 banner
IVES 9 IVES Conference Series 9 Can the use of rootstocks enhance terroir?

Can the use of rootstocks enhance terroir?

Abstract

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse. The aim of this study was to determine the influence of different rootstocks and own roots control on sensory and compositional differences in grape berries and resultant wines

Descriptive Sensory Analysis and compositional measures including GCMS were conducted on berries and wines of Vitis vinifera L. cv Shiraz vines grown on own roots or grafted to three different rootstocks (110 Richter, 1103 Paulsen, Schwarzmann). The study was conducted in an experimental rootstock vineyard in the Barossa Valley, South Australia, during two growing seasons (2009/10-2010/11).

Sensory and compositional differences were found in berries and wines from the rootstock treatments and the own roots control that were reflected in the wine quality scores.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Sandra M. OLARTE MANTILLA (1), Cassandra COLLINS (1), Patrick G. ILLAND (2) Catherine M. KIDMAN (1,3), Renata RISTIC (1), Paul K. BOSS (4), Charlotte JORDANS (1) and Susan E. P. BASTIAN (1)

(1) School of Agriculture, Food, & Wine, University of Adelaide, Waite Research Institute, PMB1, Glen Osmond, South Australia 5064, Australia
(2) Patrick IlandWine Promotions Pty Ltd, PO Box 131, Campbelltown, South Australia 5074, Australia
(3) Wynns Coonawarra Estate, Memorial Drive, Coonawarra, SA 5263, Australia
(4) CSIRO Agriculture Flagship, PMB2, Glen Osmond SA 5064, Australia

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling