terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Short communications - Safety and health 9 Mineral-wine profile and AI: wine authentication and identification

Mineral-wine profile and AI: wine authentication and identification

Abstract

The use of a wine’s mineral profile (MWP) as a stable and distinctive fingerprint can revolutionize wine authentication. By employing inductively coupled mass spectrometry, we assessed the concentration of 11B, 23Na, 24Mg, 27Al, 28Si, 31P, 34S, 35Cl, 39K, 43Ca, 45Sc, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 75As, 79Br, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 111Cd, 118Sn, 127I, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 182W, 205Tl, 208Pb, 238U with minimal sample preparation. MWP is shaped at least by soil composition and winemaking techniques. This last factor may overshadow the terroir when defining this profile, hindering origin-related information extraction. However, the integration of artificial intelligence (AI) presents itself as a solution. More than 19,000 MWPs were analysed, laying the groundwork for a machine-learning algorithm to assess wine’s country, region and main grape variety. Extreme Gradient Boosting was employed, exceeding scores of areas under the receiving operating characteristic curves of 0.9 for country, French wine region and grape variety classification. This performance enables a specificity of wine authentication up to 99%, demonstrating the potential of combining AI and MWP analysis. This study highlights the importance of comprehensive MWP datasets for advancing AI applications in origin verification, offering a promising tool for the wine industry to enhance security and consumer trust.

Profilo multiminerale e intelligenza artificiale: autenticazione e identificazione del vino

Migliorare il profilo multiminerale dei vini: dall’autenticazione all’identificazione con l’intelligenza artificiale per una maggiore sicurezza.  L’analisi del profilo di concentrazione minerale di un vino fornisce un’impronta digitale distintiva per ogni cuvée. A differenza dei profili organici, questa firma di identificazione (profilo caratteristico) rimane stabile nel tempo e può essere decifrata con un metodo di analisi diretta basato sulla spettrometria di massa ad accoppiamento induttivo (icp-ms). Con pochi millilitri di vino e una rapida preparazione, è possibile identificare più di 40 elementi minerali in concentrazioni che vanno dai grammi per litro per il potassio alle decine di nanogrammi per litro per le ultratracce metalliche, come i lantanidi.  Questa metodologia ci permette di caratterizzare quello che chiamiamo il wine mineral profile (mwp). Gli elementi minerali svolgono un ruolo cruciale nel territorio del vino, essendo principalmente derivati dal suolo attraverso l’uva e influenzati da varie tecniche di vinificazione. Tuttavia, nonostante la loro importanza, le caratteristiche del suolo sono spesso oscurate dalla moltitudine di procedure enologiche successive, ponendo notevoli sfide per l’estrazione di informazioni relative all’origine in un contesto convenzionale. Il nostro studio dimostra che l’intelligenza artificiale (ia) sta emergendo come uno strumento ottimale per decifrare accuratamente le informazioni sull’origine dal profilo minerale del vino, a condizione che venga misurato un numero sufficiente di elementi minerali e che venga esaminato un insieme ampio e completo di campioni di vino per un apprendimento efficace.  Nel corso di questo studio, in poco più di un anno è stato creato un set di dati comprendente più di 18.000 mwp. La nostra analisi si è poi concentrata sullo sviluppo di un metodo di apprendimento automatico per valutare l’origine del vino (paese, regione e denominazione) e il vitigno principale. Sono stati testati sei modelli confrontando l’area sotto la curva roc (auc). Sono stati raggiunti punteggi medi di auc superiori a 0,9 per la classificazione del paese, della regione vinicola francese e del vitigno per le identificazioni multiple di “vini sconosciuti”. Questo studio rappresenta la prima indagine completa su questa scala che coinvolge campioni di vino, sottolineando l’importanza di un set di dati mwp completo per le applicazioni di ia nella verifica dell’origine del vino. L’autenticazione del vino con una specificità superiore al 99% può già essere offerta utilizzando questo approccio.

Profil multi-minéral et ia : authentification et identification des vins 

Valorisation du profil multi-minéral des vins : de l’authentification à l’identification par intelligence artificielle pour une sécurisation renforcée.  L’analyse du profil de concentration en éléments minéraux d’un vin offre une empreinte distinctive pour chaque cuvée. Contrairement aux profils organiques, cette signature d’identification reste stable dans le temps et peut être déchiffrée grâce à une méthode d’analyse directe par spectrométrie de masse à couplage inductif (icp-ms). Avec quelques millilitres de vin et une préparation rapide, plus de 40 éléments minéraux peuvent être identifiés dans des concentrations allant de l’ordre du gramme par litre pour le potassium, à des concentrations de quelques dizaines de nanogrammes par litre pour les ultra-traces métalliques, telles que les lanthanides. Cette méthodologie permet de caractériser ce que nous appelons le profil minéral du vin (mwp). Les éléments minéraux jouent un rôle crucial dans le terroir du vin, étant principalement issus du sol à travers les raisins et influencés par diverses techniques de vinification. Cependant, malgré leur importance, les caractéristiques du sol sont souvent occultées par la multitude de procédures œnologiques ultérieures, posant ainsi des défis considérables pour extraire des informations liées à l’origine dans un contexte classique. Notre étude démontre que l’intelligence artificielle (ia) émerge comme un outil optimal pour décrypter avec précision les informations d’origine à partir du profil minéral du vin, à condition qu’un nombre suffisant d’éléments minéraux soient mesurés et qu’un ensemble de données volumineux et complet d’échantillons de vin soit examiné pour un apprentissage efficace. Au cours de cette étude, un ensemble de données comprenant plus de 18 000 mwp a été constitué en un peu plus d’un an. Notre analyse s’est ensuite concentrée sur le développement d’une méthode d’apprentissage automatique pour évaluer l’origine du vin (pays, région et appellation) et le cépage principal. Six modèles ont été testés en comparant l’aire sous la courbe roc (auc). Des scores moyens d’auc supérieurs à 0,9 pour la classification par pays, pour la région viticole française et pour le cépage ont déjà été atteints pour de multiples identifications de « vins inconnus ».  Cette étude représente la première investigation complète à cette échelle impliquant des échantillons de vin, soulignant l’importance d’un ensemble de données mwp complet pour les applications d’ia dans la vérification de l’origine du vin. L’authentification d’un vin avec plus de 99% de spécificité peut déjà être proposée grâce à cette approche.

DOI:

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Leticia Sarlo1,2, Coraline Duroux2, Théodore Tillement2, François Lux1,3, Olivier Tillement1

1 Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon 1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
2 M&Wine, 305 rue des Fours, 69270 Fontaines Saint Martin, France
3 Institut Universitaire de France (IUF), Paris

Contact the author*

Tags

Full papers OIV 2024 | IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Study of the oenological potential of varieties resistant to cryptogamic diseases and drought to anticipate varietal selection in Occitanie

In the context of climate change and the growing need to reduce the use of phytosanitary products, the exploration of disease-resistant grape varieties and/or adapted to drought conditions is becoming crucial for the wine industry in certain regions of France, such as Occitanie. Currently, exploring the oenological potential of varieties by analyzing their biochemical composition before and after winemaking comes rather late in the varietal selection process.

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.