Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 Temperature effects on the biosynthesis of aroma compounds in glera grapes

Temperature effects on the biosynthesis of aroma compounds in glera grapes

Abstract

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera. 

The trial was carried out in a commercial vineyard planted on a steep slope in the Valdobbiadene area (North-East of Italy). Three sites were selected at three different altitudes, ranging from 200 m a.s.l. to 380 m a.s.l. In each site air and berry temperature were constantly monitored during the ripening period. Starting from veraisón, grape samples were collected from each site approximately every 10 days, and then analyzed to determine the ripening level (soluble solids, acidity, pH), the amount of aroma volatile compounds and the expression of some key genes involved in the terpenoid biosynthesis. 

Preliminary data collected in 2012 highlighted the strong influence that altitude exerts on both air temperature and fruit temperature during the ripening period. The lowest site recorded the lowest minimum night temperatures, about 2°C lower than the medium and high sites, and consequently the grape ripening in this site was notably delayed compared to the medium and high sites. A similar delay was not observed in the synthesis of aroma compounds. At harvesting, the three principal classes of compounds (terpenes, norisoprenoids and benzenoids) showed lower levels in the low site. However, comparing grape samples from the three sites at the same level of ripeness, the low one displayed significantly higher amounts for all the classes of aromas. 

Preliminary results from gene expression analysis showed that the linalool synthase VvPNLinNer1 was more expressed in samples collected from the medium site. This result correlated with the higher accumulation of linalool plus its derivatives in this site.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Federica GAIOTTI (1), Fabiola MATARESE (2), Nicola BELFIORE (1), Fabrizio BATTISTA (1), Claudio D’ONOFRIO (2), Diego TOMASI (1)

(1) CRA Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Viticoltura, Viale XXVII Aprile 26, 31015 Conegliano (TV) – Italy 
(2) Department of Agriculture, Food and Environment – University of Pisa – Via del Borghetto 80, 56124 Pisa – Italy

Contact the author

Keywords

aroma compounds, temperature, altitude, climate

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.

Innovative water status monitoring of white grape varieties with on-plant sensors

Context and Purpose. Climate change presents significant challenges to agricultural sustainability, particularly through the increasing frequency of drought and water scarcity.

Terroir aspects in development of quality of Egri bikavér

Egri Bikavér (Bull’s Blood) is one of the most remarkable Hungarian red wines on inland and foreign markets as well. From the end of the 70’s the quality of Egri Bikavér was decreasing continually due to mass production. The concept of production of quality wines became general in the mid 90’s again and it resulted in a new Origin Control System, for the first time that of Egri Bikavér in Hungary.

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile