Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 Temperature effects on the biosynthesis of aroma compounds in glera grapes

Temperature effects on the biosynthesis of aroma compounds in glera grapes

Abstract

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera. 

The trial was carried out in a commercial vineyard planted on a steep slope in the Valdobbiadene area (North-East of Italy). Three sites were selected at three different altitudes, ranging from 200 m a.s.l. to 380 m a.s.l. In each site air and berry temperature were constantly monitored during the ripening period. Starting from veraisón, grape samples were collected from each site approximately every 10 days, and then analyzed to determine the ripening level (soluble solids, acidity, pH), the amount of aroma volatile compounds and the expression of some key genes involved in the terpenoid biosynthesis. 

Preliminary data collected in 2012 highlighted the strong influence that altitude exerts on both air temperature and fruit temperature during the ripening period. The lowest site recorded the lowest minimum night temperatures, about 2°C lower than the medium and high sites, and consequently the grape ripening in this site was notably delayed compared to the medium and high sites. A similar delay was not observed in the synthesis of aroma compounds. At harvesting, the three principal classes of compounds (terpenes, norisoprenoids and benzenoids) showed lower levels in the low site. However, comparing grape samples from the three sites at the same level of ripeness, the low one displayed significantly higher amounts for all the classes of aromas. 

Preliminary results from gene expression analysis showed that the linalool synthase VvPNLinNer1 was more expressed in samples collected from the medium site. This result correlated with the higher accumulation of linalool plus its derivatives in this site.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Federica GAIOTTI (1), Fabiola MATARESE (2), Nicola BELFIORE (1), Fabrizio BATTISTA (1), Claudio D’ONOFRIO (2), Diego TOMASI (1)

(1) CRA Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Viticoltura, Viale XXVII Aprile 26, 31015 Conegliano (TV) – Italy 
(2) Department of Agriculture, Food and Environment – University of Pisa – Via del Borghetto 80, 56124 Pisa – Italy

Contact the author

Keywords

aroma compounds, temperature, altitude, climate

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

The revision of the delimitation of the AOC “Champagne”

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.