Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 Temperature effects on the biosynthesis of aroma compounds in glera grapes

Temperature effects on the biosynthesis of aroma compounds in glera grapes

Abstract

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera. 

The trial was carried out in a commercial vineyard planted on a steep slope in the Valdobbiadene area (North-East of Italy). Three sites were selected at three different altitudes, ranging from 200 m a.s.l. to 380 m a.s.l. In each site air and berry temperature were constantly monitored during the ripening period. Starting from veraisón, grape samples were collected from each site approximately every 10 days, and then analyzed to determine the ripening level (soluble solids, acidity, pH), the amount of aroma volatile compounds and the expression of some key genes involved in the terpenoid biosynthesis. 

Preliminary data collected in 2012 highlighted the strong influence that altitude exerts on both air temperature and fruit temperature during the ripening period. The lowest site recorded the lowest minimum night temperatures, about 2°C lower than the medium and high sites, and consequently the grape ripening in this site was notably delayed compared to the medium and high sites. A similar delay was not observed in the synthesis of aroma compounds. At harvesting, the three principal classes of compounds (terpenes, norisoprenoids and benzenoids) showed lower levels in the low site. However, comparing grape samples from the three sites at the same level of ripeness, the low one displayed significantly higher amounts for all the classes of aromas. 

Preliminary results from gene expression analysis showed that the linalool synthase VvPNLinNer1 was more expressed in samples collected from the medium site. This result correlated with the higher accumulation of linalool plus its derivatives in this site.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Federica GAIOTTI (1), Fabiola MATARESE (2), Nicola BELFIORE (1), Fabrizio BATTISTA (1), Claudio D’ONOFRIO (2), Diego TOMASI (1)

(1) CRA Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di Ricerca per la Viticoltura, Viale XXVII Aprile 26, 31015 Conegliano (TV) – Italy 
(2) Department of Agriculture, Food and Environment – University of Pisa – Via del Borghetto 80, 56124 Pisa – Italy

Contact the author

Keywords

aroma compounds, temperature, altitude, climate

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

Determination of steviol glycosides in wine by HPLC

The SCL laboratory in Bordeaux is one of the two official control laboratories for wine and wine products in france, under the authority of the ministry of finance and two of its general directorates: the DGCCRF (directorate general for competition, consumer affairs and fraud control) and the DGDDI (directorate general of customs and excise duties). In this capacity, it verifies the regulatory compliance of wines and investigates any possible falsifications or fraud. Steviol glycosides are natural sweeteners that are not authorized as additives in wine.

Advances in the chemistry of rosé winemaking and ageing

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines.

Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

AIM: Many research studies have analyzed the effect of polysaccharides in the aromatic composition of white wines.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.