Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Harvest dates, climate, and viticultural region zoning in Greece

Harvest dates, climate, and viticultural region zoning in Greece

Abstract

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.

This research combines a spatial climate analysis in Greece with a temporal station and harvest date analysis in important Greek wine regions. The results show predominately warm to hot climate suitability in Greece, comparable to many other regions worldwide. While many viticulture regions have one primary class of suitability, variability of climate within regions can be significant, with some regions containing two to four climate classes, typically based on elevation or distance to the coast, making them suitable for a greater range of cultivars. For the temporal analysis the eight locations studied had marked differences in their general climatic characteristics, mainly between mainland and island areas. While trends varied for the regions, the general response was for greater increases in minimum temperatures compared to maximum temperatures, which resulted in significant trends in growing degree-days in most locations.

Harvest dates trended earlier in five out of the eight regions, and were mainly driven by changes in minimum temperatures. Significant trends in climate parameters and viticulture–climate relationships were more evident for island regions when compared to mainland locations. Moreover, areas with late ripening varieties were shown to be less sensitive to climate changes.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Jon Anderson (1), Paraskevi Dimou (2), Gregory V. Jones (1), Dionissios Kalivas (2), George Koufos (3), Theodoros Mavromatis (4), Stefanos Koundouras (5), and Nikolaos M. Fyllas (6)

(1) Department of Environmental Studies, Southern Oregon University, Ashland, OR, USA 
(2) Department of Land Resources and Agricultural Engineering, Agricultural University of Athens, Greece 
(3) Department of Environment, University of the Aegean, Mitilini, Greece 
(4) Department of Meteorology-Climatology, School of Geology, Aristotle University, Thessaloniki, Greece 
(5) Laboratory of Viticulture, School of Agriculture, Aristotle University, Thessaloniki, Greece 
(6) Department of Ecology and Systematics, Faculty of Biology, University of Athens, Athens, Greece 

Contact the author

Keywords

Greece, climate, viticulture, wine, harvest dates

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.