Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Harvest dates, climate, and viticultural region zoning in Greece

Harvest dates, climate, and viticultural region zoning in Greece

Abstract

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.

This research combines a spatial climate analysis in Greece with a temporal station and harvest date analysis in important Greek wine regions. The results show predominately warm to hot climate suitability in Greece, comparable to many other regions worldwide. While many viticulture regions have one primary class of suitability, variability of climate within regions can be significant, with some regions containing two to four climate classes, typically based on elevation or distance to the coast, making them suitable for a greater range of cultivars. For the temporal analysis the eight locations studied had marked differences in their general climatic characteristics, mainly between mainland and island areas. While trends varied for the regions, the general response was for greater increases in minimum temperatures compared to maximum temperatures, which resulted in significant trends in growing degree-days in most locations.

Harvest dates trended earlier in five out of the eight regions, and were mainly driven by changes in minimum temperatures. Significant trends in climate parameters and viticulture–climate relationships were more evident for island regions when compared to mainland locations. Moreover, areas with late ripening varieties were shown to be less sensitive to climate changes.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Jon Anderson (1), Paraskevi Dimou (2), Gregory V. Jones (1), Dionissios Kalivas (2), George Koufos (3), Theodoros Mavromatis (4), Stefanos Koundouras (5), and Nikolaos M. Fyllas (6)

(1) Department of Environmental Studies, Southern Oregon University, Ashland, OR, USA 
(2) Department of Land Resources and Agricultural Engineering, Agricultural University of Athens, Greece 
(3) Department of Environment, University of the Aegean, Mitilini, Greece 
(4) Department of Meteorology-Climatology, School of Geology, Aristotle University, Thessaloniki, Greece 
(5) Laboratory of Viticulture, School of Agriculture, Aristotle University, Thessaloniki, Greece 
(6) Department of Ecology and Systematics, Faculty of Biology, University of Athens, Athens, Greece 

Contact the author

Keywords

Greece, climate, viticulture, wine, harvest dates

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Vineyard floor management intensity impacts soil health indicators and biodiversity across South Australian viticultural landscapes

Vineyard floors in warm, dry landscapes including those in South Australia, have traditionally been managed using intensive practices such as tillage and herbicides to control weeds and vegetation, thereby limiting competition with grapevines for water and nutrients in order to not compromise yields.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella