Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Thermal risk assessment for viticulture using monthly temperature data

Thermal risk assessment for viticulture using monthly temperature data

Abstract

Temperature extremes affect grapevine physiology, as well as grape quality and production. In most grape growing regions, frost or heat wave events are rare and as such conducting a risk analysis using robust statistics makes the use of long term daily data necessary. However, daily climate data suffers many constraints such as typically having a short-term history, with uneven spatial coverage worldwide, and their homogenization to account for changes in climate sensors or changes in site location are challenging. In contrast, monthly data sets offer a much more robust spatiotemporal coverage. Furthermore, data at monthly time steps is relevant for climate projection analyses over the 21st century.

Therefore, the current study evaluates the relevance of estimating thermal risks for viticulture using monthly data. Daily minimum (Tmin) and maximum (Tmax) temperature data were collected from 369 weather stations in Europe (European Climate Assessment & Dataset) and 1218 weather stations in the USA (United States Historical Climatology Network) for the period from 1972 to 2008. For the whole period and for each station, the average yearly number of winter freeze days (Tmin < -17°C), spring frost days (Tmin < -1°C), and heat stress days (Tmax > 35°C) were calculated. In addition, frequencies of years with at least one spring frost event, the date of the last spring frost event at 90% probability (i.e. the quantile 0.9) and frequencies of years with at least one winter freeze event were calculated.

These thermal risk indicators, analyzed on a daily time step, exhibited strong relationships with maximum and minimum monthly average temperatures during the 1972-2008 period. Winter freeze risk is strongly linked to January average monthly minimum temperature, while spring frost risk is related to April minimum monthly temperature. The average number of heat stress days is strongly correlated to July maximum temperature. Using WorldClim 5 arc-minute resolution climate grids, a winter frost risk map for the 1950-2000 period is proposed. The results suggest that grape growing region limits are strongly restrained by winter freeze risk hazards.

DOI:

Publication date: August 10, 2020

Issue: Terroir 2014

Type: Article

Authors

Benjamin BOIS (1), Marco MORIONDO (2) and Gregory V JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 DIJON, France 
(2) CNR-IBIMET, via G. Caproni 8, 50145, Florence, Italy 
(3) Department of Environmental Studies, Southern Oregon University, 97520,101A Taylor Hall, Ashland, OR, U.S.A.

Keywords

Thermal risks, climate, viticulture, WFR, SFR, HST

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.

Gas Chromatography-Olfactometry (GCO) screening of odorant compounds associated with the tails-off flavour in wine distillates

The development of off-flavours in wine distillates, particularly those associated with the tails fraction, is a key issue in the production of high-quality spirits.

Investigation of the effect of gelatine and egg albumin fining and cross-flow microfiltration on the phenolic composition of Pinotage red wine

Results indicated that cross-flow microfiltration removed similarly to fining treatments the most astringent tannins, but cross-flow microfiltration also removed up to 14 % more colour. RP-HPLC and spectrophotometric results showed that egg albumin is a softer fining treatment compared to gelatine and cross-flow microfiltration.