Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Thermal risk assessment for viticulture using monthly temperature data

Thermal risk assessment for viticulture using monthly temperature data

Abstract

Temperature extremes affect grapevine physiology, as well as grape quality and production. In most grape growing regions, frost or heat wave events are rare and as such conducting a risk analysis using robust statistics makes the use of long term daily data necessary. However, daily climate data suffers many constraints such as typically having a short-term history, with uneven spatial coverage worldwide, and their homogenization to account for changes in climate sensors or changes in site location are challenging. In contrast, monthly data sets offer a much more robust spatiotemporal coverage. Furthermore, data at monthly time steps is relevant for climate projection analyses over the 21st century.

Therefore, the current study evaluates the relevance of estimating thermal risks for viticulture using monthly data. Daily minimum (Tmin) and maximum (Tmax) temperature data were collected from 369 weather stations in Europe (European Climate Assessment & Dataset) and 1218 weather stations in the USA (United States Historical Climatology Network) for the period from 1972 to 2008. For the whole period and for each station, the average yearly number of winter freeze days (Tmin < -17°C), spring frost days (Tmin < -1°C), and heat stress days (Tmax > 35°C) were calculated. In addition, frequencies of years with at least one spring frost event, the date of the last spring frost event at 90% probability (i.e. the quantile 0.9) and frequencies of years with at least one winter freeze event were calculated.

These thermal risk indicators, analyzed on a daily time step, exhibited strong relationships with maximum and minimum monthly average temperatures during the 1972-2008 period. Winter freeze risk is strongly linked to January average monthly minimum temperature, while spring frost risk is related to April minimum monthly temperature. The average number of heat stress days is strongly correlated to July maximum temperature. Using WorldClim 5 arc-minute resolution climate grids, a winter frost risk map for the 1950-2000 period is proposed. The results suggest that grape growing region limits are strongly restrained by winter freeze risk hazards.

DOI:

Publication date: August 10, 2020

Issue: Terroir 2014

Type: Article

Authors

Benjamin BOIS (1), Marco MORIONDO (2) and Gregory V JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 DIJON, France 
(2) CNR-IBIMET, via G. Caproni 8, 50145, Florence, Italy 
(3) Department of Environmental Studies, Southern Oregon University, 97520,101A Taylor Hall, Ashland, OR, U.S.A.

Keywords

Thermal risks, climate, viticulture, WFR, SFR, HST

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.