Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Thermal risk assessment for viticulture using monthly temperature data

Thermal risk assessment for viticulture using monthly temperature data

Abstract

Temperature extremes affect grapevine physiology, as well as grape quality and production. In most grape growing regions, frost or heat wave events are rare and as such conducting a risk analysis using robust statistics makes the use of long term daily data necessary. However, daily climate data suffers many constraints such as typically having a short-term history, with uneven spatial coverage worldwide, and their homogenization to account for changes in climate sensors or changes in site location are challenging. In contrast, monthly data sets offer a much more robust spatiotemporal coverage. Furthermore, data at monthly time steps is relevant for climate projection analyses over the 21st century.

Therefore, the current study evaluates the relevance of estimating thermal risks for viticulture using monthly data. Daily minimum (Tmin) and maximum (Tmax) temperature data were collected from 369 weather stations in Europe (European Climate Assessment & Dataset) and 1218 weather stations in the USA (United States Historical Climatology Network) for the period from 1972 to 2008. For the whole period and for each station, the average yearly number of winter freeze days (Tmin < -17°C), spring frost days (Tmin < -1°C), and heat stress days (Tmax > 35°C) were calculated. In addition, frequencies of years with at least one spring frost event, the date of the last spring frost event at 90% probability (i.e. the quantile 0.9) and frequencies of years with at least one winter freeze event were calculated.

These thermal risk indicators, analyzed on a daily time step, exhibited strong relationships with maximum and minimum monthly average temperatures during the 1972-2008 period. Winter freeze risk is strongly linked to January average monthly minimum temperature, while spring frost risk is related to April minimum monthly temperature. The average number of heat stress days is strongly correlated to July maximum temperature. Using WorldClim 5 arc-minute resolution climate grids, a winter frost risk map for the 1950-2000 period is proposed. The results suggest that grape growing region limits are strongly restrained by winter freeze risk hazards.

DOI:

Publication date: August 10, 2020

Issue: Terroir 2014

Type: Article

Authors

Benjamin BOIS (1), Marco MORIONDO (2) and Gregory V JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 DIJON, France 
(2) CNR-IBIMET, via G. Caproni 8, 50145, Florence, Italy 
(3) Department of Environmental Studies, Southern Oregon University, 97520,101A Taylor Hall, Ashland, OR, U.S.A.

Keywords

Thermal risks, climate, viticulture, WFR, SFR, HST

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Use of cyclodextrins to improve grape must fermentability thanks to their sequestering effect on medium-chain fatty acids

Cyclodextrins are complex cyclic oligosaccharides of glucose units. They are produced from the breakdown of starch by the enzymatic reaction of glucosyltransferase. The result is a ring-shaped molecule with a cavity with a hydrophilic outer part and a hydrophobic inner part. As a consequence of this cavity, cyclodextrin is able to form complexes with non-polar organic molecules [1,2].

A global and regional study on winegrowers’ perceptions and adaptations to climate change

Aim: The aim of this study was to explore the current and future state of the wine sector in the context of climate change, where the goal was to obtain greater understanding on winegrowers’ perceptions and adaptations to a changing climate and its associated impacts. The study sought to provide both a global and regional perspective on these issues.