Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 High resolution climatic zoning of the Portuguese viticultural regions

High resolution climatic zoning of the Portuguese viticultural regions

Abstract

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI). A two-step method of spatial downscaling is applied in order to attain a very high spatial resolution (near 1 km) over Portuguese mainland. Future projections are established using an ensemble of 13 regional climate models, under the IPCC A1B-SRES emission scenario. Results show that CatI integrates the most important bioclimatic characteristics of a given region, and allows the direct comparison between them. Outcomes for the recent-past are in clear agreement with the current geographical distribution of this crop and of the established winemaking regions. Conversely, under future scenarios, projections point to a lower bioclimatic diversity, due to the expected warming and drying throughout the country. This will likely lead to changes in grapevine suitability and wine characteristics of each viticultural region, which may result in additional challenges for the winemaking sector. As such, suitable adaptation measures need to be developed in order to mitigate climate change impacts on the Portuguese viticulture. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Gregory V. JONES (1), Helder FRAGA (2), Aureliano C. MALHEIRO (2), José MOUTINHO-PEREIRA (2), Fernando ALVES (3), Joaquim G. PINTO (4,5), João A. SANTOS (2)

(1) Department of Environmental Studies, Southern Oregon University, Oregon, USA 
(2) CITAB, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal (
(3) ADVID Associação para o Desenvolvimento da Viticultura Duriense, Godim, Portugal 
(4) Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany 
(5) Department of Meteorology, University of Reading, Reading, United Kingdom

Contact the author

Keywords

Viticultural zoning, Bioclimatic downscaling, Climate models, Climate change, Portugal 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.