Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 High resolution climatic zoning of the Portuguese viticultural regions

High resolution climatic zoning of the Portuguese viticultural regions

Abstract

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI). A two-step method of spatial downscaling is applied in order to attain a very high spatial resolution (near 1 km) over Portuguese mainland. Future projections are established using an ensemble of 13 regional climate models, under the IPCC A1B-SRES emission scenario. Results show that CatI integrates the most important bioclimatic characteristics of a given region, and allows the direct comparison between them. Outcomes for the recent-past are in clear agreement with the current geographical distribution of this crop and of the established winemaking regions. Conversely, under future scenarios, projections point to a lower bioclimatic diversity, due to the expected warming and drying throughout the country. This will likely lead to changes in grapevine suitability and wine characteristics of each viticultural region, which may result in additional challenges for the winemaking sector. As such, suitable adaptation measures need to be developed in order to mitigate climate change impacts on the Portuguese viticulture. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Gregory V. JONES (1), Helder FRAGA (2), Aureliano C. MALHEIRO (2), José MOUTINHO-PEREIRA (2), Fernando ALVES (3), Joaquim G. PINTO (4,5), João A. SANTOS (2)

(1) Department of Environmental Studies, Southern Oregon University, Oregon, USA 
(2) CITAB, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal (
(3) ADVID Associação para o Desenvolvimento da Viticultura Duriense, Godim, Portugal 
(4) Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany 
(5) Department of Meteorology, University of Reading, Reading, United Kingdom

Contact the author

Keywords

Viticultural zoning, Bioclimatic downscaling, Climate models, Climate change, Portugal 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.