Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 High resolution climatic zoning of the Portuguese viticultural regions

High resolution climatic zoning of the Portuguese viticultural regions

Abstract

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI). A two-step method of spatial downscaling is applied in order to attain a very high spatial resolution (near 1 km) over Portuguese mainland. Future projections are established using an ensemble of 13 regional climate models, under the IPCC A1B-SRES emission scenario. Results show that CatI integrates the most important bioclimatic characteristics of a given region, and allows the direct comparison between them. Outcomes for the recent-past are in clear agreement with the current geographical distribution of this crop and of the established winemaking regions. Conversely, under future scenarios, projections point to a lower bioclimatic diversity, due to the expected warming and drying throughout the country. This will likely lead to changes in grapevine suitability and wine characteristics of each viticultural region, which may result in additional challenges for the winemaking sector. As such, suitable adaptation measures need to be developed in order to mitigate climate change impacts on the Portuguese viticulture. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Gregory V. JONES (1), Helder FRAGA (2), Aureliano C. MALHEIRO (2), José MOUTINHO-PEREIRA (2), Fernando ALVES (3), Joaquim G. PINTO (4,5), João A. SANTOS (2)

(1) Department of Environmental Studies, Southern Oregon University, Oregon, USA 
(2) CITAB, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal (
(3) ADVID Associação para o Desenvolvimento da Viticultura Duriense, Godim, Portugal 
(4) Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany 
(5) Department of Meteorology, University of Reading, Reading, United Kingdom

Contact the author

Keywords

Viticultural zoning, Bioclimatic downscaling, Climate models, Climate change, Portugal 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.