Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Abstract

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by specific terroir factors of a vineyard, and that vines with low water status [based on leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (less negative leaf ψ). Six different Riesling vineyard blocks throughout the Niagara Region in Ontario, Canada were chosen. Data were collected every six weeks, at fruit set, lag phase, and veraison (soil moisture, leaf ψ), at harvest (yield components, berry composition), and three times during the winter (LT50; the temperature at which 50 % of the buds die; bud death) in the 2010-12 seasons. Interpolation and mapping of the variables was completed using the kriging interpolation method (ArcGIS 10.1) and statistical analyses (linear correlation, k-means clustering, principal components analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. GIS and statistical analysis revealed that both leaf ψ and berry weight could predict the LT50 value, with particularly strong positive correlations observed between LT50 and leaf ψ values in most of the vineyard blocks in 2010-11 (4/6 and 5/6, respectively). In the extremely dry 2012 season, leaf ψ (range across sites at veraison 0.9 to 1.4 MPa) was positively correlated to LT50, yield, titratable acidity, pH, and Brix and negatively to soil moisture and monoterpene concentration in Riesling. Overall, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir. Furthermore, this study allows for means by which to compare winter hardiness to other critical variables in order to better understand the terroir of the Niagara region. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew REYNOLDS, Mary JASINSKI, Fred DIPROFIO, Audrey PASQUIER, MAXIME TOUFFET, and Rea FELLMAN

Contact the author

Keywords

Soil moisture, leaf water potential, LT50, monoterpenes, GPS, GIS 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Berry shrivel causes – summarizing current hypotheses

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.