Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Abstract

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by specific terroir factors of a vineyard, and that vines with low water status [based on leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (less negative leaf ψ). Six different Riesling vineyard blocks throughout the Niagara Region in Ontario, Canada were chosen. Data were collected every six weeks, at fruit set, lag phase, and veraison (soil moisture, leaf ψ), at harvest (yield components, berry composition), and three times during the winter (LT50; the temperature at which 50 % of the buds die; bud death) in the 2010-12 seasons. Interpolation and mapping of the variables was completed using the kriging interpolation method (ArcGIS 10.1) and statistical analyses (linear correlation, k-means clustering, principal components analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. GIS and statistical analysis revealed that both leaf ψ and berry weight could predict the LT50 value, with particularly strong positive correlations observed between LT50 and leaf ψ values in most of the vineyard blocks in 2010-11 (4/6 and 5/6, respectively). In the extremely dry 2012 season, leaf ψ (range across sites at veraison 0.9 to 1.4 MPa) was positively correlated to LT50, yield, titratable acidity, pH, and Brix and negatively to soil moisture and monoterpene concentration in Riesling. Overall, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir. Furthermore, this study allows for means by which to compare winter hardiness to other critical variables in order to better understand the terroir of the Niagara region. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew REYNOLDS, Mary JASINSKI, Fred DIPROFIO, Audrey PASQUIER, MAXIME TOUFFET, and Rea FELLMAN

Contact the author

Keywords

Soil moisture, leaf water potential, LT50, monoterpenes, GPS, GIS 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Corvina and Corvinone grape berries grown in different areas and their aptitude to postharvest dehydration

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes.