Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Abstract

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by specific terroir factors of a vineyard, and that vines with low water status [based on leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (less negative leaf ψ). Six different Riesling vineyard blocks throughout the Niagara Region in Ontario, Canada were chosen. Data were collected every six weeks, at fruit set, lag phase, and veraison (soil moisture, leaf ψ), at harvest (yield components, berry composition), and three times during the winter (LT50; the temperature at which 50 % of the buds die; bud death) in the 2010-12 seasons. Interpolation and mapping of the variables was completed using the kriging interpolation method (ArcGIS 10.1) and statistical analyses (linear correlation, k-means clustering, principal components analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. GIS and statistical analysis revealed that both leaf ψ and berry weight could predict the LT50 value, with particularly strong positive correlations observed between LT50 and leaf ψ values in most of the vineyard blocks in 2010-11 (4/6 and 5/6, respectively). In the extremely dry 2012 season, leaf ψ (range across sites at veraison 0.9 to 1.4 MPa) was positively correlated to LT50, yield, titratable acidity, pH, and Brix and negatively to soil moisture and monoterpene concentration in Riesling. Overall, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir. Furthermore, this study allows for means by which to compare winter hardiness to other critical variables in order to better understand the terroir of the Niagara region. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew REYNOLDS, Mary JASINSKI, Fred DIPROFIO, Audrey PASQUIER, MAXIME TOUFFET, and Rea FELLMAN

Contact the author

Keywords

Soil moisture, leaf water potential, LT50, monoterpenes, GPS, GIS 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values.

French wine sector facing climate change (part. 1): A national strategy built on a foresight and participatory approach

A foresight study was carried out by a group of experts from INRAE, universities, INAO and FranceAgriMer from 2014 as part of the multidisciplinary “laccave” project intended to anticipate climate change in the French wine industry. The initial objective was to initiate an interdisciplinary dialogue between researchers and to feed their questions in a more systemic way. The scenario development method made it possible to build possible futures for the wine sector in the face of climate change. It began by drafting four adaptation strategies, combining different possible intensities of innovation and relocation of the vineyard.

Recent advancements in understanding the terroir effect on aromas in grapes and wines

Terroir is about the link between wine and its origin. It has long been understood by sensory evaluation that the taste of wine from a given variety can be related to its origins. Specific organoleptic characteristics of wine are influenced by environmental factors such as soil and climate. By deconstructing the effect of measurable soil and climate parameters on grape and wine aroma compounds,

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life.

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.