Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Abstract

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by specific terroir factors of a vineyard, and that vines with low water status [based on leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (less negative leaf ψ). Six different Riesling vineyard blocks throughout the Niagara Region in Ontario, Canada were chosen. Data were collected every six weeks, at fruit set, lag phase, and veraison (soil moisture, leaf ψ), at harvest (yield components, berry composition), and three times during the winter (LT50; the temperature at which 50 % of the buds die; bud death) in the 2010-12 seasons. Interpolation and mapping of the variables was completed using the kriging interpolation method (ArcGIS 10.1) and statistical analyses (linear correlation, k-means clustering, principal components analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. GIS and statistical analysis revealed that both leaf ψ and berry weight could predict the LT50 value, with particularly strong positive correlations observed between LT50 and leaf ψ values in most of the vineyard blocks in 2010-11 (4/6 and 5/6, respectively). In the extremely dry 2012 season, leaf ψ (range across sites at veraison 0.9 to 1.4 MPa) was positively correlated to LT50, yield, titratable acidity, pH, and Brix and negatively to soil moisture and monoterpene concentration in Riesling. Overall, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir. Furthermore, this study allows for means by which to compare winter hardiness to other critical variables in order to better understand the terroir of the Niagara region. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew REYNOLDS, Mary JASINSKI, Fred DIPROFIO, Audrey PASQUIER, MAXIME TOUFFET, and Rea FELLMAN

Contact the author

Keywords

Soil moisture, leaf water potential, LT50, monoterpenes, GPS, GIS 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

Conventions and methods towards landscape quality: an application in the Douro (Portugal)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.