terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

Abstract

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry. Spent yeast (SY), usually found in the fermentation lees, is the second largest sidestream in wineries, accounting for approximately 25% of the total sidestreams, amounting to approximately 2.5 million tonnes worldwide1,2. Today, SY is mainly either processed as waste, which is associated with a high cost, or used for low-value applications such as bioenergy or compost1,3. However, several high-value applications are on the rise where specific yeast-derived components are used for functional purposes in food or feed. Within the wine industry, several of these yeast-derived products are already used to improve wine quality. For example, mannoprotein isolates can be used to protect against tartrate precipitations or protein haze and to accelerate the effects on on-lees ageing1,4. However, these products are usually derived from baker’s yeast instead of using the spent yeast already available. To accommodate the use of SY for such high-value applications, it is important to understand yeast properties to allow for an efficient production of these yeast-derived components. Therefore, we set out to investigate the effect of fermentation on yeast by examining a wide variety of SY samples to evaluate their potential for valorisation towards functional yeast-derived components.

To achieve this, 32 spent yeast samples were collected from various wineries and breweries. These samples were analysed for a set of chemical (e.g. cell wall composition, protein content, polyphenol content) and physiological characteristics (e.g. cell size, cell wall hydrophobicity, cell surface charge). In these samples, a large variability in cell wall compounds (β-glucan 7-18% and mannoprotein 6-23%) was observed. To investigate the impact of this variability on the isolation of yeast-derived components, SY was autolysed and the amount of cell wall material in the isolates was determined, which varied between 22 and 87%. In addition, the assimilable nitrogen content in yeast extracts varied by a factor of 5 depending on the specific SY sample. Results from this work can be used to assess the suitability of an SY stream for valorisation purposes, which will increase the value of these streams and provide winemakers with an additional stream of revenue.

References

[1] De Iseppi, A., Lomolino, G., Marangon, M., & Curioni, A. (2020). Current and future strategies for wine yeast lees valorization. Food Research International, 137, 109352.

[2] OIV (2024) State of the world vine and wine sector in 2023. International Organisation of Vine and Wine http://www.oiv.int/sites/default/files/2024-04/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf

[3] Devesa-Rey, R., Vecino, X., Varela-Alende, J. L., Barral, M. T., Cruz, J. M., & Moldes, A. B. (2011). Valorization of winery waste vs. the costs of not recycling. Waste management, 31(11), 2327-2335.

[4] Valentin, D., Chollet, S., Nestrud, M., Abdi, H. (2018). Descriptive analysis in sensory evaluation, 535-559.

Publication date: June 5, 2025

Type: Poster

Authors

Dries Croonen1,*, Esther De Groof1, Charlotte F. De Schepper1, An Bautil1, Kristof Brijs1 and Christophe M. Courtin1

1 Laboratory of Food Chemistry and Biochemistry (LFCB) and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium

Contact the author*

Keywords

side stream valorisation, spent yeast, mannoprotein, yeast beta-glucan

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Sensory patterns observed towards the oxidation of white, rosé and sparkling wines: An exploratory study

Oxygen management is crucial in terms of wine quality. Even more for white and rosé wines, which are less protected against oxidation than reds due to the lower levels of antioxidant polyphenols. This need is due to the existence of equilibria between chemical forms depending on the redox potential.

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.