terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

On the impact of preformed α-dicarbonyls in the production of Strecker aldehydes. Exploring the addition of sacrificial amino acids as a tool to reduce Strecker aldehydes production

Abstract

The reaction between Strecker amino acids and α-dicarbonyls is a key pathway in the formation of Strecker aldehydes (SA), which are crucial oxidation-related odorants in wine [1]. While most α-dicarbonyls result from phenolic compound oxidation, others, such as diacetyl and methylglyoxal, are present in wine regardless oxidation and their role in SA production is not well understood. Additionally, the influence of specific metal ions on SA production via these preformed dicarbonyls remains unclear. Meanwhile, strategies to reduce SA formation based on the addition of naturally-occurring amino acids in wine that could deplete those α-dicarbonyls reacting in Strecker reaction would be promising which is particularly relevant in the context of the growing demand for minimal-intervention wines.

For this purpose, several accelerated oxidation procedures were applied in both synthetic and real wine matrices to analyse the reaction rates of diacetyl and methylglyoxal in anoxic conditions, evaluate the impact of Mn2+, Cu2+ and Fe2+ on their reactivity as well as to compare them with quinones formed from 4-methylcatechol and gallic acid. In the meanwhile, the reduction of SA by the addition of sacrificial amino acids was explored for alanine, tyrosine, aspartic acid, glutamic acid, serine, glycine, and threonine.

In synthetic wine under anoxic conditions, the reaction rates of diacetyl and methylglyoxal are significantly enhanced by Mn2+ (p<0.05), while Cu2+ has no effect. However, the production of SA from these compounds is still 2-3 orders of magnitude lower compared to phenolic-derived α-dicarbonyls, even when reactivity is higher in real wine. The addition of specific sacrificial amino acids to real wine results in small, but significant (p<0.05), changes in SA production.

Key findings of this research on SA production by preformed α-dicarbonyls include: first, these dicarbonyls are less reactive than those formed from phenolic compounds; secondly, their reactivity increases significantly in real wine, indicating substantial SA production even under anoxic conditions; finally, their reactivity can be influenced by metal ions in ways that differ from phenolic compounds.

References

[1] Bueno, M., Marrufo-Curtido, A., Carrascón, V., Fernández-Zurbano,P., Escudero, A. & Ferreira, V. (2018). Frontiers in Chemistry, 6(1).

Publication date: June 4, 2025

Type: Poster

Authors

Mónica Bueno1,*, Ángel Manuel Aragón-Capone2, María José Gómez-Cruz1, David Marzo-Méndez1, Laura D. Aguerri-Fernández1, Ana Escudero1 and Vicente Ferreira1

1 Laboratorio de Análisis del Aroma y Enología (LAAE), Departamento de Química Analítica, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
2 Instituto de Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), Departamento de Enología, Logroño, La Rioja, Spain.

Contact the author*

Keywords

wine oxidation, preformed α-dicarbonyls, Strecker aldehydes, key formation parameters, sacrificial amino acids

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Photodegradation of retsina wine: does pine resin protect against light-induced changes?

Retsina is a wine deeply rooted in Greek tradition but often misunderstood, largely due to the poor quality associated with past production. Historically, pine resin was used to seal wine transport containers, and over time, its distinctive aroma led to its intentional incorporation into winemaking.

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.