Terroir 2012 banner
IVES 9 IVES Conference Series 9 Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

Abstract

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates. In a vitivinicultural zoning project of CYTED (Ibero-American Program for Science, Technology and Development), a viticultural climatic characterization was done in this macro viticultural region. The project have assembled a climatic database that characterizes the viticultural regions, including relevant variables for viticulture: air temperature (mean, maximum, and minimum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. Using indices of the Geoviticulture MCC System (HI, CI and DI), more than 70 viticultural regions in different countries (Argentina, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal and Uruguay) were characterized according to its viticultural climatic. The results, which will be integrated to the worldwide database of the MCC System, showed that the Ibero-American viticulture is placed in a wide range of climatic groups of the wine producing regions around the world. This article presents the climatic groups found in Ibero-America, identifying also some new climatic groups not yet found in other regions of the world. This work also identifies some climatic groups not found in Ibero-America viticulture. The research has also highlighted viticultural areas characterized by climates with “intra-annual climatic variability”, with the potential to produce more than one growing cycle per year. The results allow to conclude that the wide variability and climatic diversity present in Ibero-America may be one of the reasons to explain the diversity in terms of wine types, sensorial characteristics, typicity and uniqueness of wines produced on this macro-region.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Jorge TONIETTO (1), Vicente SOTÉS RUIZ (2), Carlo MONTES (3), Ernesto MARTÍN ULIARTE (4), Luis ANTELO BRUNO (5), Pedro CLÍMACO (6), Yenia PÉREZ ACEVEDO (7), César VALENZUELA-SOLANO (8), Beatriz HATTA SAKODA (9), Alain CARBONNEAU (10)

(1) EMBRAPA Uva e Vinho, Rua Livramento, 515 – 95700-000 – Bento Gonçalves, Brazil
(2) UPM – Universidad Politécnica de Madrid, Spain
(3) CEAZA – Centro de Estudios Avanzados en Zonas Áridas, Chile
(4) INTA – EEA Mendoza, Argentina
(5) PFCUVS-FAUTAPO, Desarrollo de Mercados, Bolivia
(6) Instituto Nacional de Recursos Biológicos, I.P., INIA – Dois Portos, Portugal
(7) Instituto de Investigaciones en Fruticultura Tropical, Cuba
(8) Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias – INIFAP, México
(9) Universidad Nacional Agraria La Molina, Peru
(10) AGRO Montpellier, France

Contact the author

Keywords

viticultural climate, MCC System, Ibero-American countries, climatic groups

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Effects Of Injections Of Large Amounts Of Air During Fermentation

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).