Terroir 2012 banner
IVES 9 IVES Conference Series 9 Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

Abstract

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates. In a vitivinicultural zoning project of CYTED (Ibero-American Program for Science, Technology and Development), a viticultural climatic characterization was done in this macro viticultural region. The project have assembled a climatic database that characterizes the viticultural regions, including relevant variables for viticulture: air temperature (mean, maximum, and minimum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. Using indices of the Geoviticulture MCC System (HI, CI and DI), more than 70 viticultural regions in different countries (Argentina, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal and Uruguay) were characterized according to its viticultural climatic. The results, which will be integrated to the worldwide database of the MCC System, showed that the Ibero-American viticulture is placed in a wide range of climatic groups of the wine producing regions around the world. This article presents the climatic groups found in Ibero-America, identifying also some new climatic groups not yet found in other regions of the world. This work also identifies some climatic groups not found in Ibero-America viticulture. The research has also highlighted viticultural areas characterized by climates with “intra-annual climatic variability”, with the potential to produce more than one growing cycle per year. The results allow to conclude that the wide variability and climatic diversity present in Ibero-America may be one of the reasons to explain the diversity in terms of wine types, sensorial characteristics, typicity and uniqueness of wines produced on this macro-region.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Jorge TONIETTO (1), Vicente SOTÉS RUIZ (2), Carlo MONTES (3), Ernesto MARTÍN ULIARTE (4), Luis ANTELO BRUNO (5), Pedro CLÍMACO (6), Yenia PÉREZ ACEVEDO (7), César VALENZUELA-SOLANO (8), Beatriz HATTA SAKODA (9), Alain CARBONNEAU (10)

(1) EMBRAPA Uva e Vinho, Rua Livramento, 515 – 95700-000 – Bento Gonçalves, Brazil
(2) UPM – Universidad Politécnica de Madrid, Spain
(3) CEAZA – Centro de Estudios Avanzados en Zonas Áridas, Chile
(4) INTA – EEA Mendoza, Argentina
(5) PFCUVS-FAUTAPO, Desarrollo de Mercados, Bolivia
(6) Instituto Nacional de Recursos Biológicos, I.P., INIA – Dois Portos, Portugal
(7) Instituto de Investigaciones en Fruticultura Tropical, Cuba
(8) Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias – INIFAP, México
(9) Universidad Nacional Agraria La Molina, Peru
(10) AGRO Montpellier, France

Contact the author

Keywords

viticultural climate, MCC System, Ibero-American countries, climatic groups

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Physiological responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

Challenging conditions created by limited water supply and changes in the climate require an understanding of the physiological status of table grapes along the whole value chain. This is critical to develop tools for regulatory management of growth balances and grape quality. This study aimed to determine the impact of different amounts of water and an altered micro-climate (complete covering of vineyards with plastic) on the physiological reaction of the grapevine during the growth season.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.