Terroir 2012 banner
IVES 9 IVES Conference Series 9 Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

Abstract

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates. In a vitivinicultural zoning project of CYTED (Ibero-American Program for Science, Technology and Development), a viticultural climatic characterization was done in this macro viticultural region. The project have assembled a climatic database that characterizes the viticultural regions, including relevant variables for viticulture: air temperature (mean, maximum, and minimum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. Using indices of the Geoviticulture MCC System (HI, CI and DI), more than 70 viticultural regions in different countries (Argentina, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal and Uruguay) were characterized according to its viticultural climatic. The results, which will be integrated to the worldwide database of the MCC System, showed that the Ibero-American viticulture is placed in a wide range of climatic groups of the wine producing regions around the world. This article presents the climatic groups found in Ibero-America, identifying also some new climatic groups not yet found in other regions of the world. This work also identifies some climatic groups not found in Ibero-America viticulture. The research has also highlighted viticultural areas characterized by climates with “intra-annual climatic variability”, with the potential to produce more than one growing cycle per year. The results allow to conclude that the wide variability and climatic diversity present in Ibero-America may be one of the reasons to explain the diversity in terms of wine types, sensorial characteristics, typicity and uniqueness of wines produced on this macro-region.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Jorge TONIETTO (1), Vicente SOTÉS RUIZ (2), Carlo MONTES (3), Ernesto MARTÍN ULIARTE (4), Luis ANTELO BRUNO (5), Pedro CLÍMACO (6), Yenia PÉREZ ACEVEDO (7), César VALENZUELA-SOLANO (8), Beatriz HATTA SAKODA (9), Alain CARBONNEAU (10)

(1) EMBRAPA Uva e Vinho, Rua Livramento, 515 – 95700-000 – Bento Gonçalves, Brazil
(2) UPM – Universidad Politécnica de Madrid, Spain
(3) CEAZA – Centro de Estudios Avanzados en Zonas Áridas, Chile
(4) INTA – EEA Mendoza, Argentina
(5) PFCUVS-FAUTAPO, Desarrollo de Mercados, Bolivia
(6) Instituto Nacional de Recursos Biológicos, I.P., INIA – Dois Portos, Portugal
(7) Instituto de Investigaciones en Fruticultura Tropical, Cuba
(8) Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias – INIFAP, México
(9) Universidad Nacional Agraria La Molina, Peru
(10) AGRO Montpellier, France

Contact the author

Keywords

viticultural climate, MCC System, Ibero-American countries, climatic groups

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.