Terroir 2012 banner
IVES 9 IVES Conference Series 9 Zoning mountain landscapes for a valorisation of high identity products

Zoning mountain landscapes for a valorisation of high identity products

Abstract

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment has produced unique, and valuable landscapes. Whereas some of these mountain viticultural sites have earned a place in the World Heritage List of UNESCO, not all of them are being actively preserved. In order to protect “heroic viticulture” it is crucial to build a complete and systematic inventory of these sites.

In partnership with the “Centro di Ricerca, Studi e Valorizzazione della Viticoltura Montana” (CERVIM), we developed a methodology to produce a landscape zoning of mountain territories or steep slopes territories.
This methodology is largely based on geographic information systems (GIS), and consists of a serie of analyses on high resolution Digital Elevation Model (DEM) and Digital Surface Model (DSM), obtained by Light Detection and Ranging (LIDAR). We developed a methodology to identify two major components of these landscapes: flat areas, slope failure/break demarcation, and their succession. We developed an automated chain of landscape classification analyses on two areas (Val di Cembra Italy and Banyuls, France) which might be also applicated to larger areas. In addition to the technical processes, this method allowed us to understand the processes that created such landscapes. We also proposed a prototype of web interface that would allow the wine consumers to verify the mountain provenance of production. The underlying idea is to reconcile the mass consumer with the “heroic” territory that he is about to consume.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Étienne DELAY (1), Fabio ZOTTELE (2)

(1) GEOLAB UMR 6042 CNRS, Université de Limoges, FLSH, 39 rue Camille Guérin 87036 Limoges – FRANCE
(2) Centre for Technology Transfer, Fondazione Edmund MACH Via E. Mach, 1 38010 S. Michele all’Adige (TN) – ITALY

Contact the author

Keywords

Terroir valorization, GIS, mountain viticulture, heroic viticulture

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Enological characters of thirty vines in four different zones of Tuscany

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

A multilayer interactive web map of the wine growing region carnuntum with emphasis on geochemical and mineralogical zoning

During a three-year study the vineyards of the wine-growing region Carnuntum have been investigated for their terroir characteristics (climate, soil, rocks) and major viticulture functions. As an outcome of the study, various thematic layers and geodata analyses describe the geo-environmental properties and variability of the wine growing region and delimit homogenous multilayer mapping units by using a Geographic Information System.