Terroir 2012 banner
IVES 9 IVES Conference Series 9 Zoning mountain landscapes for a valorisation of high identity products

Zoning mountain landscapes for a valorisation of high identity products

Abstract

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment has produced unique, and valuable landscapes. Whereas some of these mountain viticultural sites have earned a place in the World Heritage List of UNESCO, not all of them are being actively preserved. In order to protect “heroic viticulture” it is crucial to build a complete and systematic inventory of these sites.

In partnership with the “Centro di Ricerca, Studi e Valorizzazione della Viticoltura Montana” (CERVIM), we developed a methodology to produce a landscape zoning of mountain territories or steep slopes territories.
This methodology is largely based on geographic information systems (GIS), and consists of a serie of analyses on high resolution Digital Elevation Model (DEM) and Digital Surface Model (DSM), obtained by Light Detection and Ranging (LIDAR). We developed a methodology to identify two major components of these landscapes: flat areas, slope failure/break demarcation, and their succession. We developed an automated chain of landscape classification analyses on two areas (Val di Cembra Italy and Banyuls, France) which might be also applicated to larger areas. In addition to the technical processes, this method allowed us to understand the processes that created such landscapes. We also proposed a prototype of web interface that would allow the wine consumers to verify the mountain provenance of production. The underlying idea is to reconcile the mass consumer with the “heroic” territory that he is about to consume.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Étienne DELAY (1), Fabio ZOTTELE (2)

(1) GEOLAB UMR 6042 CNRS, Université de Limoges, FLSH, 39 rue Camille Guérin 87036 Limoges – FRANCE
(2) Centre for Technology Transfer, Fondazione Edmund MACH Via E. Mach, 1 38010 S. Michele all’Adige (TN) – ITALY

Contact the author

Keywords

Terroir valorization, GIS, mountain viticulture, heroic viticulture

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.

Post-spring frost canopy development and fruit composition in cv. Barbera grapevines

One of the effects of warming trends is the advance of budburst, increasing the frequency of spring frost-related damage. In April 2021, a severe frost event affected central and northern italian viticulture. In a cv. Barbera vineyard located in the Colli Piacentini wine district, after such occurrence, vines were tracked and growth of primary bud shoots (PBS), secondary bud shoots (SBS), and suckers (SK) was monitored, as well as their fruitfulness and fruit composition. Vine performances were then compared to those of the previous year, when no post-budburst freezing temperatures occurred. The goal of the study was to evaluate the efficacy of SBS in restoring yield loss due to PBS injuries and analyze respective contribution to fruit composition.

Piloting grape ripening in a global warming scenario: feasible techniques are available

Under the pressure of global warming, several wine grape growing regions around the world are increasingly suffering from advanced and compressed phenology; endangering wine character while also creating serious logistic problems. From a physiological standpoint, the issue of delaying ripening is not simple as, in several instances, only a few processes must be delayed (i.e. sugar accumulation into the berries) while other events such as pigmentation and accumulation of other important phenolic compounds should proceed at a normal rate. Thus, the issue of decoupling technological maturity from phenolic maturity is another important consideration. Over the last decades, several research groups have endeavored to establish alternate cultural practices aimed at addressing this decoupling. In some cases, special applications of quite robust and well known practices regarding physiological principles have been utilized, however some completely new techniques are also being studied. In figure 1 of the review, we offer a panorama of the available tools and in the text we elaborate on those having provided most reliable and consistent results under an array of genotypes and environmental conditions. Among these, primary focus is given to post‐veraison—apical to the cluster—leaf removal (that can also be suitably replaced by applications of anti‐transpirants); the use of kaolin against multiple summers’ stresses; and a drastic version of late winter pruning having the potential to postpone ripening into a cooler period with improved grape composition and a limited negative impact on yield and storage reserves replenishment. 

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design.