Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Abstract

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas (AVAs). Eight of the Columbia Basin’s AVAs are smaller subdivisions (sub-AVAs) of the 46,100 km2 Columbia Valley AVA. Although legally distinct, the Columbia Basin AVAs are generally similar with regard to climate, landscape, and soils, the principle components of physical terroir.

To test whether the AVAs of the Columbia Basin are distinguishable based on the chemical properties of their soils, 53 samples were collected from vineyards considered to be representative within their respective AVAs. Sampled locations within each vineyard were selected as typical based on the advice of resident viticulturalists. Vineyard soils from the Willamette Valley and Snake River Valley, which are other major viticultural regions of the Pacific Northwest, were also sampled for comparison.

Soils were sampled from a depth of 50-75 cm and analyzed for bulk chemistry and plant-available nutrients. The analyses revealed that, of the 10 AVAs, only the Columbia Gorge, Walla Walla Valley, and Lake Chelan AVAs have distinct differences that could be attributed to variations in climate and parent material. Columbia Basin soils could be readily distinguished from vineyard soils of the Willamette Valley and Snake River Valley based on compositional differences that result primarily from variations in soil parent material and climate-controlled rates of weathering.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Kevin POGUE, Erica PITCAVAGE

Department of Geology, Whitman College, 345 Boyer Ave., Walla Walla, WA 99362 USA

Contact the author

Keywords

Columbia Basin, Columbia Valley, soil, chemistry, Pacific Northwest.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Contribution of viticultural and oenological factors to the aromatic potential of white Colombard wines from the south west of France Gascony vineyard

The aim of this work is to determine the influence of viticultural and oenological factors to the aromatic potential of white wines from Colombard variety in the south west of France Gascony vineyard.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Les outils pour favoriser le renouvellement des générations en viticulture

French lawmakers have chosen the family-type winegrowing business as the benchmark for drafting the legal framework for winegrowing businesses and winegrowers. In france (source: msa), in 2022, there were 1,444 new winegrowers, an increase of 3% compared with 2021, representing 10% of new farm managers. The retention rate for winegrowers is 75% (up 13% on 2021), compared with 77% for all agricultural sectors (stable).

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Il caso “Lambrusco” è emblematico di un buon connubio tra un gruppo di vitigni ed un territorio di pianura caratterizzato da suoli fertili e alluvionali, che determinano un elevato sviluppo