Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

Abstract

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas (AVAs). Eight of the Columbia Basin’s AVAs are smaller subdivisions (sub-AVAs) of the 46,100 km2 Columbia Valley AVA. Although legally distinct, the Columbia Basin AVAs are generally similar with regard to climate, landscape, and soils, the principle components of physical terroir.

To test whether the AVAs of the Columbia Basin are distinguishable based on the chemical properties of their soils, 53 samples were collected from vineyards considered to be representative within their respective AVAs. Sampled locations within each vineyard were selected as typical based on the advice of resident viticulturalists. Vineyard soils from the Willamette Valley and Snake River Valley, which are other major viticultural regions of the Pacific Northwest, were also sampled for comparison.

Soils were sampled from a depth of 50-75 cm and analyzed for bulk chemistry and plant-available nutrients. The analyses revealed that, of the 10 AVAs, only the Columbia Gorge, Walla Walla Valley, and Lake Chelan AVAs have distinct differences that could be attributed to variations in climate and parent material. Columbia Basin soils could be readily distinguished from vineyard soils of the Willamette Valley and Snake River Valley based on compositional differences that result primarily from variations in soil parent material and climate-controlled rates of weathering.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Kevin POGUE, Erica PITCAVAGE

Department of Geology, Whitman College, 345 Boyer Ave., Walla Walla, WA 99362 USA

Contact the author

Keywords

Columbia Basin, Columbia Valley, soil, chemistry, Pacific Northwest.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

Zoning the climatic potentialities and risk of vineyards & wine production regions

In this video recording of the IVES science meeting 2021, Benjamin Bois (Institut Universitaire de la Vigne et du Vin – IUVV, Université de Bourgogne, Dijon, France) speaks about zoning the climatic potentialities and risk of vineyards & wine production regions. This presentation is based on an original article accessible for free on OENO One

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.