Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Abstract

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination… Therefore, there is an increasing interest to develop sustainable viticulture in the famous Champagne vineyard for 20 years: a program called “VITI 2000” has been developed since 1986 by CIVC (Inter-professional Committee of Champagne Wine) in collaboration with scientists. The aims are i) to assess the impact of viticultural practices on soil functioning, environmental properties and wine quality, ii) to advice progressively sustainable practices to winegrowers. One strength of this program is to allow a long term field experiment: earthworm communities, microbial biomass, soil and vine parameters were followed during 25 years in 19 plots representing 66 treatments to test the impact of pesticides applications (nematicides, fungicides, herbicides), or organic matter inputs, or vine management (organic vs conventional vs integrated). This program ended in a huge data collection e.g. the data table of earthworm communities (species, body mass, sexual stage) presents more than 39 000 lines. A database, compatible to others soil fauna databases developed by the laboratory EcoBio (University Rennes 1), has been developed. First results indicate that i) grass strip between the vine rows and compost quickly stimulate biological soil processes, while dried organic matter inputs have a slow positive impact, ii) fungicides containing copper alter in the same pattern earthworms and microorganisms, iii) integrated management could be as positive as organic practices. Statistical treatments are still going on and further results will be discussed.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Guénola PERES (1), Raphaël MARICHAL (1), Rémi CHAUSSOD (2), Rachida NOUAIM (3), Arnaud DESCOTES (4), Cédric GEORGET (4), Dominique MONTCOMBLE (4), André PERRAUD (4), Antoine DEWISME (1), Daniel CLUZEAU (1)

(1) Université Rennes 1, UMR 6553 Ecobio CNRS-Univ Rennes 1, Station Biologique de Paimpont, 35380 Paimpont, France.
(2) Inra Dijon, UMR microbiologie du sol et de l’environnement, 17 rue Sully BP 86510, 21065 Dijon cedex, France.
(3) SEMSE – Services & Études en Microbiologie des Sols et de l’Environnement, Viévigne, France.
(4) CIVC- Comité Interprofessionnel du Vin de Champagne, 5 rue Henri Martin 51200 Epernay, France.

Contact the author

Keywords

vineyard, organic matter inputs, earthworm communities, microbial biomass

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Le terre dei Lambruschi modenesi

La superficie vitata della provincia di Modena é per circa il 70% interessata dai Lambruschi, famiglia di vitigni tipica dei territori pianeggianti emiliani. Tra questi, i più rappresentativi sono il Lambrusco di Sorbara, il Lambrusco salamino e il Lambrusco grasparossa che, unico esempio, predilige gli ambienti collinari della provincia. Nel quinquennio 2001-2005 la Provincia di Modena ed il C.R.P.V. hanno coordinato la zonazione viticola di tutto il territorio dei Lambruschi modenesi, i cui risultati hanno consentito di individuare, in ciascuna zona D.O.C., alcune Terre in cui cias.