Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Abstract

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination… Therefore, there is an increasing interest to develop sustainable viticulture in the famous Champagne vineyard for 20 years: a program called “VITI 2000” has been developed since 1986 by CIVC (Inter-professional Committee of Champagne Wine) in collaboration with scientists. The aims are i) to assess the impact of viticultural practices on soil functioning, environmental properties and wine quality, ii) to advice progressively sustainable practices to winegrowers. One strength of this program is to allow a long term field experiment: earthworm communities, microbial biomass, soil and vine parameters were followed during 25 years in 19 plots representing 66 treatments to test the impact of pesticides applications (nematicides, fungicides, herbicides), or organic matter inputs, or vine management (organic vs conventional vs integrated). This program ended in a huge data collection e.g. the data table of earthworm communities (species, body mass, sexual stage) presents more than 39 000 lines. A database, compatible to others soil fauna databases developed by the laboratory EcoBio (University Rennes 1), has been developed. First results indicate that i) grass strip between the vine rows and compost quickly stimulate biological soil processes, while dried organic matter inputs have a slow positive impact, ii) fungicides containing copper alter in the same pattern earthworms and microorganisms, iii) integrated management could be as positive as organic practices. Statistical treatments are still going on and further results will be discussed.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Guénola PERES (1), Raphaël MARICHAL (1), Rémi CHAUSSOD (2), Rachida NOUAIM (3), Arnaud DESCOTES (4), Cédric GEORGET (4), Dominique MONTCOMBLE (4), André PERRAUD (4), Antoine DEWISME (1), Daniel CLUZEAU (1)

(1) Université Rennes 1, UMR 6553 Ecobio CNRS-Univ Rennes 1, Station Biologique de Paimpont, 35380 Paimpont, France.
(2) Inra Dijon, UMR microbiologie du sol et de l’environnement, 17 rue Sully BP 86510, 21065 Dijon cedex, France.
(3) SEMSE – Services & Études en Microbiologie des Sols et de l’Environnement, Viévigne, France.
(4) CIVC- Comité Interprofessionnel du Vin de Champagne, 5 rue Henri Martin 51200 Epernay, France.

Contact the author

Keywords

vineyard, organic matter inputs, earthworm communities, microbial biomass

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.