Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Abstract

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination… Therefore, there is an increasing interest to develop sustainable viticulture in the famous Champagne vineyard for 20 years: a program called “VITI 2000” has been developed since 1986 by CIVC (Inter-professional Committee of Champagne Wine) in collaboration with scientists. The aims are i) to assess the impact of viticultural practices on soil functioning, environmental properties and wine quality, ii) to advice progressively sustainable practices to winegrowers. One strength of this program is to allow a long term field experiment: earthworm communities, microbial biomass, soil and vine parameters were followed during 25 years in 19 plots representing 66 treatments to test the impact of pesticides applications (nematicides, fungicides, herbicides), or organic matter inputs, or vine management (organic vs conventional vs integrated). This program ended in a huge data collection e.g. the data table of earthworm communities (species, body mass, sexual stage) presents more than 39 000 lines. A database, compatible to others soil fauna databases developed by the laboratory EcoBio (University Rennes 1), has been developed. First results indicate that i) grass strip between the vine rows and compost quickly stimulate biological soil processes, while dried organic matter inputs have a slow positive impact, ii) fungicides containing copper alter in the same pattern earthworms and microorganisms, iii) integrated management could be as positive as organic practices. Statistical treatments are still going on and further results will be discussed.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Guénola PERES (1), Raphaël MARICHAL (1), Rémi CHAUSSOD (2), Rachida NOUAIM (3), Arnaud DESCOTES (4), Cédric GEORGET (4), Dominique MONTCOMBLE (4), André PERRAUD (4), Antoine DEWISME (1), Daniel CLUZEAU (1)

(1) Université Rennes 1, UMR 6553 Ecobio CNRS-Univ Rennes 1, Station Biologique de Paimpont, 35380 Paimpont, France.
(2) Inra Dijon, UMR microbiologie du sol et de l’environnement, 17 rue Sully BP 86510, 21065 Dijon cedex, France.
(3) SEMSE – Services & Études en Microbiologie des Sols et de l’Environnement, Viévigne, France.
(4) CIVC- Comité Interprofessionnel du Vin de Champagne, 5 rue Henri Martin 51200 Epernay, France.

Contact the author

Keywords

vineyard, organic matter inputs, earthworm communities, microbial biomass

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Application de l’Analyse du Cycle de Vie (ACV) à un domaine viticole

Since 1980, Château de l’Éclair has belonged to SICAREX Beaujolais and has been involved in experimentation for the Beaujolais vineyards. However, it is a commercial estate with profitability and quality constraints, which means that it has to meet the growing environmental expectations of consumers. Given the number of practices claimed to be environment-friendly, it is sometimes difficult to prioritize actions.

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

Innovations on red winemaking process by ultrasound technology

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.