Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Abstract

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination… Therefore, there is an increasing interest to develop sustainable viticulture in the famous Champagne vineyard for 20 years: a program called “VITI 2000” has been developed since 1986 by CIVC (Inter-professional Committee of Champagne Wine) in collaboration with scientists. The aims are i) to assess the impact of viticultural practices on soil functioning, environmental properties and wine quality, ii) to advice progressively sustainable practices to winegrowers. One strength of this program is to allow a long term field experiment: earthworm communities, microbial biomass, soil and vine parameters were followed during 25 years in 19 plots representing 66 treatments to test the impact of pesticides applications (nematicides, fungicides, herbicides), or organic matter inputs, or vine management (organic vs conventional vs integrated). This program ended in a huge data collection e.g. the data table of earthworm communities (species, body mass, sexual stage) presents more than 39 000 lines. A database, compatible to others soil fauna databases developed by the laboratory EcoBio (University Rennes 1), has been developed. First results indicate that i) grass strip between the vine rows and compost quickly stimulate biological soil processes, while dried organic matter inputs have a slow positive impact, ii) fungicides containing copper alter in the same pattern earthworms and microorganisms, iii) integrated management could be as positive as organic practices. Statistical treatments are still going on and further results will be discussed.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Guénola PERES (1), Raphaël MARICHAL (1), Rémi CHAUSSOD (2), Rachida NOUAIM (3), Arnaud DESCOTES (4), Cédric GEORGET (4), Dominique MONTCOMBLE (4), André PERRAUD (4), Antoine DEWISME (1), Daniel CLUZEAU (1)

(1) Université Rennes 1, UMR 6553 Ecobio CNRS-Univ Rennes 1, Station Biologique de Paimpont, 35380 Paimpont, France.
(2) Inra Dijon, UMR microbiologie du sol et de l’environnement, 17 rue Sully BP 86510, 21065 Dijon cedex, France.
(3) SEMSE – Services & Études en Microbiologie des Sols et de l’Environnement, Viévigne, France.
(4) CIVC- Comité Interprofessionnel du Vin de Champagne, 5 rue Henri Martin 51200 Epernay, France.

Contact the author

Keywords

vineyard, organic matter inputs, earthworm communities, microbial biomass

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Swiss terroirs studies

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland.

Impact of winemaking practises on the formation of pinking

The pinking is a phenomenon that can occur in white wine produced with white grape causing the color change from yellow to red-salmon hue. Even if its appearance is highly variable and dependent to the vintage, the wines from certain grape varieties, such as Sauvignon blanc, Chardonnay, Riesling and Trebbiano di Lugana, have been identified to be more susceptible to the pinking.

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.