Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

Abstract

We report the effects of different drip irrigation treatments on the agronomic performance and water relations of Tempranillo grapevines, pruned to a bilateral cordon, trained to VSP and under similar cultural practices, in four different locations of Spain, during the 2009-2011 seasons. In three locations (Requena, Badajoz and Valladolid) a pre-veraison deficit irrigation strategy (DIP, where irrigation was withheld until a threshold of midday stem water potential, Ystem was reached, and later irrigated at full ETc) was compared to rain-fed vines; while in the fourth location (Albacete), DIP was compared to a sustained deficit irrigation (SDI, irrigated at 33% ETc season long). In all locations, except Valladolid, another treatment irrigated at full ETc season long was also studied. Results show that rain-fed vines suffered severe water stress in most seasons and sites, reaching Ystem values of up to -1.5 MPa. Pooled over seasons the seasonal water application in the DIP strategy, varied largely among locations (between 76 and 250 mm), but produced a similar increase of relative yield in all sites (by 43 to 48%), mainly due to increased berry size and cluster weight. DIP compared to rain-fed vines also increased leaf area and pruning weight but in different proportion depending on site. Irrigation at full ETc, compared to DIP, only produced small and in most cases non-significant increases in these variables. Pooling data over sites, Ystem was well related with vine yield, indicating that it allows the integration of a large part of the on-site specific characteristics affecting vine yield. However, vine balance and other agronomic parameters varied largely among locations, showing the importance of the interaction between terroir and irrigation in affecting vine performance. Reasons for the differences in behaviour among sites are discussed.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Juan Ramon CASTEL (1), Maria Esperanza VALDÉS (2), María Henar PRIETO (3), David URIARTE (3), Luis MANCHA (3), Amelia MONTORO (4), Fernando MAÑAS (4), Ramon LÓPEZ-URREA (4),
Prudencio LÓPEZ-FUSTER (4), Jesús YUSTE (5), María Valle ALBURQUERQUE (5), José Ramón YUSTE (5), EnriqueBARAJAS (5), Antonio YEVES (1), Diego PÉREZ (1), Diego Sebastiano INTRIGLIOLO (1)

(1) Instituto Valenciano de Investigaciones Agrarias, Moncada 46113 Valencia, Spain.
(2) Instituto Tecnológico Agroalimentario de Extremadura, 06071 Badajoz, Spain.
(3) Centro de Investigación Finca La Orden-Valdesequera, Guadajira, 06080 Badajoz, Spain.
(4) Instituto Técnico Agronómico Provincial, 02006 Albacete, Spain.
(5) Instituto Tecnológico Agrario de Castilla y León, Finca Zamadueñas, 47071 Valladolid, Spain.

Contact the author

Keywords

Stem water potential, Vine balance, Vitis vinifera, yield

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.

Investigation of the effect of gelatine and egg albumin fining and cross-flow microfiltration on the phenolic composition of Pinotage red wine

Results indicated that cross-flow microfiltration removed similarly to fining treatments the most astringent tannins, but cross-flow microfiltration also removed up to 14 % more colour. RP-HPLC and spectrophotometric results showed that egg albumin is a softer fining treatment compared to gelatine and cross-flow microfiltration.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.