Terroir 2012 banner
IVES 9 IVES Conference Series 9 Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Abstract

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection, precision viticulture mobilizes on-board sensors, computers, and GNSS positioning. Three sensors were embedded on a tractor and tested on a plot with three champagne grape varieties. This plot is located at the Plumecoq experimental vineyard (CIVC, Champagne, France). The first sensor is a pruning wood sensor (Physiocap) designed and developed by CIVC. Physiocap is used during dormancy season to characterize vine architecture by measuring shoot vigor, shoot number and biomass. The other two are growing season sensors. GreenSeeker Trimble provides a vegetative vine index by measuring foliage porosity. Multiplex Force-A characterizes vine metabolism through chlorophyll, anthocyanin, flavonol, and nitrogen leaf content. Data from these sensors define the physiological state of the vine at the time of measure. The sensors can also map spatial vine variability within a plot or between plots. To understand the vineyard as a whole, the combination of biomass indexes and leaf contents is interesting. In this case, there was some good correlation between the indexes and yield and must compounds such as nitrogen, acidity or sugar. By collecting sensor data at several key stages, it is possible to plot vine trajectories. Vine trajectory describes the physiological developments made by the vineyard according to its initial potential. It depends on annual climatic conditions and physical environment. Vine trajectories are useful to understand the effect of year and terroir.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Sébastien DEBUISSON, Manon MORLET, Claire GERMAIN, Olivier GARCIA, Laurent PANIGAÏ, Dominique MONCOMBLE

Comité Interprofessionnel du Vin de Champagne (CIVC)

Contact the author

Keywords

Precision viticulture, vine trajectory, multiplex, NDVI, Pruning wood sensor

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Application of treatments to delay the ripening of grape varieties cultivated in valpolicella

Winegrape cultivars are particularly sensitive to temperature and recent changes in climate have advanced the onset of berry ripening, resulting in unbalanced fruit composition at harvest.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

Long-term flooding effects on the physiological and productive performance of Montepulciano and Sangiovese cultivars

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.