Terroir 2012 banner
IVES 9 IVES Conference Series 9 Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Abstract

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection, precision viticulture mobilizes on-board sensors, computers, and GNSS positioning. Three sensors were embedded on a tractor and tested on a plot with three champagne grape varieties. This plot is located at the Plumecoq experimental vineyard (CIVC, Champagne, France). The first sensor is a pruning wood sensor (Physiocap) designed and developed by CIVC. Physiocap is used during dormancy season to characterize vine architecture by measuring shoot vigor, shoot number and biomass. The other two are growing season sensors. GreenSeeker Trimble provides a vegetative vine index by measuring foliage porosity. Multiplex Force-A characterizes vine metabolism through chlorophyll, anthocyanin, flavonol, and nitrogen leaf content. Data from these sensors define the physiological state of the vine at the time of measure. The sensors can also map spatial vine variability within a plot or between plots. To understand the vineyard as a whole, the combination of biomass indexes and leaf contents is interesting. In this case, there was some good correlation between the indexes and yield and must compounds such as nitrogen, acidity or sugar. By collecting sensor data at several key stages, it is possible to plot vine trajectories. Vine trajectory describes the physiological developments made by the vineyard according to its initial potential. It depends on annual climatic conditions and physical environment. Vine trajectories are useful to understand the effect of year and terroir.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Sébastien DEBUISSON, Manon MORLET, Claire GERMAIN, Olivier GARCIA, Laurent PANIGAÏ, Dominique MONCOMBLE

Comité Interprofessionnel du Vin de Champagne (CIVC)

Contact the author

Keywords

Precision viticulture, vine trajectory, multiplex, NDVI, Pruning wood sensor

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced.