Terroir 2012 banner
IVES 9 IVES Conference Series 9 Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Abstract

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection, precision viticulture mobilizes on-board sensors, computers, and GNSS positioning. Three sensors were embedded on a tractor and tested on a plot with three champagne grape varieties. This plot is located at the Plumecoq experimental vineyard (CIVC, Champagne, France). The first sensor is a pruning wood sensor (Physiocap) designed and developed by CIVC. Physiocap is used during dormancy season to characterize vine architecture by measuring shoot vigor, shoot number and biomass. The other two are growing season sensors. GreenSeeker Trimble provides a vegetative vine index by measuring foliage porosity. Multiplex Force-A characterizes vine metabolism through chlorophyll, anthocyanin, flavonol, and nitrogen leaf content. Data from these sensors define the physiological state of the vine at the time of measure. The sensors can also map spatial vine variability within a plot or between plots. To understand the vineyard as a whole, the combination of biomass indexes and leaf contents is interesting. In this case, there was some good correlation between the indexes and yield and must compounds such as nitrogen, acidity or sugar. By collecting sensor data at several key stages, it is possible to plot vine trajectories. Vine trajectory describes the physiological developments made by the vineyard according to its initial potential. It depends on annual climatic conditions and physical environment. Vine trajectories are useful to understand the effect of year and terroir.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Sébastien DEBUISSON, Manon MORLET, Claire GERMAIN, Olivier GARCIA, Laurent PANIGAÏ, Dominique MONCOMBLE

Comité Interprofessionnel du Vin de Champagne (CIVC)

Contact the author

Keywords

Precision viticulture, vine trajectory, multiplex, NDVI, Pruning wood sensor

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

A applied viticultural zoning, based on the “secteurs de la reference” methodology, in the Cognac vineyard (France)

Dans les Charentes, en réponse à une crise de production du vignoble destiné à la production de Cognac, un plan de diversification viticole pour des vins de pays de qualité est mis en place. Il nécessite une connaissance des sols et de leurs caractéristiques viticoles pour orienter le choix des types de vins et adapter l’itinéraire technique de production.

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.

Bilan hydrique: une méthode proposée pour l’évaluation des réserves hydriques dans le zonage viticole

Dans le zonage viticole mis en place dans la province de Taranto, on a introduit la méthode du bilan hydrique pour évaluer les réserves hydriques dans les 8 zones déterminées

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.