Terroir 2012 banner
IVES 9 IVES Conference Series 9 Influence of pedoclimatic factors during berry ripening in Burgundy

Influence of pedoclimatic factors during berry ripening in Burgundy

Abstract

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy. The impact of the main components of terroir – vintage, soil, exposition, topography, varietal, rootstock, age, density and vine management- were studied simultaneously, during berry ripening. Berry composition during ripening was assessed each week by the sampling of 400 berries and the following analyses of grape-juice were carried out : sugar, total acidity, malic acid, tartaric acid, pH, and potassium. The variables total acidity, malic acid and tartaric acid were anti-correlated to sugar content. The potassium variable explained an important part of the grape composition variability in the network. Statistical analysis allowed ranking of the terroir factors in order of importance during ripening. The vintage, highly significant, was the major factor, followed by factors cultivar, exposition and soil, who all had statistically significant influence. Pinot noir reaches maturity earlier than Chardonnay. Blocks with a North exposition present a delay in maturation, especially on steep slopes. Grapes reach maturity earlier on South exposed slopes, although this does not lead to higher sugar accumulations. The shallow limestone soils on hard bead-rock, limit potassium accumulation, probably because of limited water supply. Among the colluvium soils, variability may be explained by the importance of soil depth. The wine-growers factor had also a great influence in this study.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Amélie BERTHAUT (1), Guillaume MORVAN (2)

(1) Concoeur, 21700 Nuits-Saint-Georges, Bordeaux Science Agro, 1cours du général de Gaulle, 33170 Gradignan
(2) Chambre d’agriculture de l’Yonne, 14 bis rue Guynemer, BP 50289, 89005 Auxerre cedex

Contact the author

Keywords

Ripening, variability, vintage effect, soil effect, exposition effect, typology

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.