Terroir 2012 banner
IVES 9 IVES Conference Series 9 Influence of pedoclimatic factors during berry ripening in Burgundy

Influence of pedoclimatic factors during berry ripening in Burgundy

Abstract

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy. The impact of the main components of terroir – vintage, soil, exposition, topography, varietal, rootstock, age, density and vine management- were studied simultaneously, during berry ripening. Berry composition during ripening was assessed each week by the sampling of 400 berries and the following analyses of grape-juice were carried out : sugar, total acidity, malic acid, tartaric acid, pH, and potassium. The variables total acidity, malic acid and tartaric acid were anti-correlated to sugar content. The potassium variable explained an important part of the grape composition variability in the network. Statistical analysis allowed ranking of the terroir factors in order of importance during ripening. The vintage, highly significant, was the major factor, followed by factors cultivar, exposition and soil, who all had statistically significant influence. Pinot noir reaches maturity earlier than Chardonnay. Blocks with a North exposition present a delay in maturation, especially on steep slopes. Grapes reach maturity earlier on South exposed slopes, although this does not lead to higher sugar accumulations. The shallow limestone soils on hard bead-rock, limit potassium accumulation, probably because of limited water supply. Among the colluvium soils, variability may be explained by the importance of soil depth. The wine-growers factor had also a great influence in this study.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Amélie BERTHAUT (1), Guillaume MORVAN (2)

(1) Concoeur, 21700 Nuits-Saint-Georges, Bordeaux Science Agro, 1cours du général de Gaulle, 33170 Gradignan
(2) Chambre d’agriculture de l’Yonne, 14 bis rue Guynemer, BP 50289, 89005 Auxerre cedex

Contact the author

Keywords

Ripening, variability, vintage effect, soil effect, exposition effect, typology

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Characterization of berry softening and sugar accumulation dynamics in a slow-ripening genotype and its response to abscisic acid treatments

In the current viticultural context, global warming leads to advanced and possibly accelerated ripening which can alter the balance among desirable grape quality traits sought for winemaking. Evaluation of genetic material that displays delayed and/or slower ripening could uncover a potential “slow ripening” trait for incorporation into commercial varieties through breeding. In this study, we evaluated a white-fruited selection discovered in the Grape Breeding and Genetics program at E. & J. Gallo Winery that displayed an unusual ripening pattern compared to standard varieties. Vines of the slow-ripening selection did not differ in their visual appearance, water status or gas exchange characteristics compared to vines of its normal-ripening sibling.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].