Terroir 2012 banner
IVES 9 IVES Conference Series 9 Influence of pedoclimatic factors during berry ripening in Burgundy

Influence of pedoclimatic factors during berry ripening in Burgundy

Abstract

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy. The impact of the main components of terroir – vintage, soil, exposition, topography, varietal, rootstock, age, density and vine management- were studied simultaneously, during berry ripening. Berry composition during ripening was assessed each week by the sampling of 400 berries and the following analyses of grape-juice were carried out : sugar, total acidity, malic acid, tartaric acid, pH, and potassium. The variables total acidity, malic acid and tartaric acid were anti-correlated to sugar content. The potassium variable explained an important part of the grape composition variability in the network. Statistical analysis allowed ranking of the terroir factors in order of importance during ripening. The vintage, highly significant, was the major factor, followed by factors cultivar, exposition and soil, who all had statistically significant influence. Pinot noir reaches maturity earlier than Chardonnay. Blocks with a North exposition present a delay in maturation, especially on steep slopes. Grapes reach maturity earlier on South exposed slopes, although this does not lead to higher sugar accumulations. The shallow limestone soils on hard bead-rock, limit potassium accumulation, probably because of limited water supply. Among the colluvium soils, variability may be explained by the importance of soil depth. The wine-growers factor had also a great influence in this study.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Amélie BERTHAUT (1), Guillaume MORVAN (2)

(1) Concoeur, 21700 Nuits-Saint-Georges, Bordeaux Science Agro, 1cours du général de Gaulle, 33170 Gradignan
(2) Chambre d’agriculture de l’Yonne, 14 bis rue Guynemer, BP 50289, 89005 Auxerre cedex

Contact the author

Keywords

Ripening, variability, vintage effect, soil effect, exposition effect, typology

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Adaptation et expression de l’encépagement et mode de conduite en différents terroirs de la région du Douro/vin de Porto

Ce travail a pour objet l’analyse des résultats agronomiques obtenus sur trois unités expérimentales du Centre d’Etudes Vitivinicoles du Douro (CEVDouro), localisées dans des écosystèmes différenciés de la Région du Douro/Vin de Porto, à différentes altitudes (130, 330 et 520 mètres) et à des expositions diversifiées (SE, N et W).

A meta-analysis of the ecological impact of viticultural practices on soil biodiversity

Viticulture is facing two major challenges – climate change and agroecological transition. The soil plays a pivotal role in these transition processes. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Over the last 15 years, numerous studies evidenced strong effects of viticultural practices on the soil physical, chemical and biological quality. However, to date a global analysis providing a comprehensive overview of the ecological impacts of viticultural practices on soil biological quality is missing.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.