Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Abstract

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

Methods and Results: Twenty-six representative wineries from 5 sub-regions of Ningxia were selected, and their vineyard soils were analysed at 20, 40, and 60 cm. Soil electric conductivity, organic carbon, available N, P, K, and total N, P, K, Na, Mg, Ca were quantified. Forty wines from those wineries made from cvs Cabernet Sauvignon, Cabernet Franc, Merlot, etc were also sampled, and their aroma profiles were analysed with GC-MS. Wine aromas showed large diversity, and principal component analysis showed that the key discrimination factor was the variety. Wines from Cabernet Sauvignon, Cabernet Franc, and Merlot exhibited distinct aroma profile, while vineyard location only had minor discrimination contribution. Further analysis for each variety revealed that the wines from Cabernet Sauvignon had quite distinct aromas from different vineyard locations. Soil chemical properties showed clear differences between regions, particularly the quantity of total N, K, and Mg. Correlation network analysis further identified strong and interesting linkages between specific aroma compounds and soil chemical properties. 

Conclusions: 

Our study found both wine aroma and soil chemical properties showing large diversity at Ningxia region. Grape variety plays a key role in determining wine aroma, while vineyard location with different soils can finely tune wine aroma for a given variety. 

Significance and Impact of the Study: Our results established the interaction between soil properties and genotypes on wine aromas. It highlights the importance to consider the matching between grape variety and soil type for designing future geographic regulation of wine production in Ningxia.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Zhanwu Dai1, Yangfu Kuang1, Xuenan Yao1, Huiqing Bai1, Shaohua Li1, Benhong Wu1*

1Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China

Contact the author

Keywords

Terroir, soil properties, wine aromas, Helan, Ningxia

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.