Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Abstract

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

Methods and Results: Twenty-six representative wineries from 5 sub-regions of Ningxia were selected, and their vineyard soils were analysed at 20, 40, and 60 cm. Soil electric conductivity, organic carbon, available N, P, K, and total N, P, K, Na, Mg, Ca were quantified. Forty wines from those wineries made from cvs Cabernet Sauvignon, Cabernet Franc, Merlot, etc were also sampled, and their aroma profiles were analysed with GC-MS. Wine aromas showed large diversity, and principal component analysis showed that the key discrimination factor was the variety. Wines from Cabernet Sauvignon, Cabernet Franc, and Merlot exhibited distinct aroma profile, while vineyard location only had minor discrimination contribution. Further analysis for each variety revealed that the wines from Cabernet Sauvignon had quite distinct aromas from different vineyard locations. Soil chemical properties showed clear differences between regions, particularly the quantity of total N, K, and Mg. Correlation network analysis further identified strong and interesting linkages between specific aroma compounds and soil chemical properties. 

Conclusions: 

Our study found both wine aroma and soil chemical properties showing large diversity at Ningxia region. Grape variety plays a key role in determining wine aroma, while vineyard location with different soils can finely tune wine aroma for a given variety. 

Significance and Impact of the Study: Our results established the interaction between soil properties and genotypes on wine aromas. It highlights the importance to consider the matching between grape variety and soil type for designing future geographic regulation of wine production in Ningxia.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Zhanwu Dai1, Yangfu Kuang1, Xuenan Yao1, Huiqing Bai1, Shaohua Li1, Benhong Wu1*

1Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China

Contact the author

Keywords

Terroir, soil properties, wine aromas, Helan, Ningxia

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

The wine sector is of great relevance and tradition in Mediterranean countries, however, it may be most susceptible to climate change. In recent years, wine production is facing changes worldwide, both at environmental as well as commercial levels, due to global warming and the shift in consumers’ preferences. Wine growers and wine makers are in search of solutions that allow to face these new challenges. One of the most promising initiatives in the long term is the introduction of new plant materials, specifically intraspecific hybridizations between premium varieties that may improve traditional germplasm in its adaptation to climate change. These inter-varietal crosses have the potential to generate quality wines, whilst maintaining the regional typicity, and constitute an attractive alternative for the consumer due to their sensory attributes. In this study, we have evaluated wines from 29 intraspecific Garnacha x Tempranillo hybrids in two different locations, with the aim to assess their oenological potential and sensory attributes. Thirteen of the selections were white and 16 were red. Microvinifications were conducted with two or three replications depending on grape availability. Conventional oenological parameters were determined for all wines. The sensory evaluation and hedonic scores were given by five experts. Red selections obtained higher quality scores than white ones. Among the white selections with higher quality scores, GT-41 Varea and GT-159 Varea outstand, due to their high total acidity and high malic acid content. Regarding red selections, GT-57 Varea and GT-57 UR were perceived as higher in quality, highlighted for their moderate alcoholic and high anthocyanin content. Our results indicate that intraspecific hybridization may be a powerful tool for adapting traditional cultivars to climate change in Rioja.

Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Water and heat stress impose new challenges to irrigation management in the Mediterranean areas. This reality has a major impact on the vineyard ecosystem, particularly on the scarce water resources of the Alentejo region (South Portugal). To mitigate this problem, irrigation management should focus on optimizing yield and fruit quality per volume of water applied. This work aims to discuss the use of predawn leaf water potential and soil water status relationships as a decision tool for irrigation management taking as basis data from a field trial where two deficit irrigation strategies were compared.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Viti-Tunnel, an automatically removable protection against diseases, frost and hail, a way to drastically reduce the use of pesticides

Viti-tunnel®, une innovation imaginée pour répondre à deux des objectifs majeurs des viticulteurs : 1.la sécurisation de la vendange : viti-tunnel® permet de protéger les vignobles des pertes de récolte dues aux maladies, au gel et à la grêle. 2.la réduction des pesticides : viti-tunnel® permet de réduire de plus de 90 %, le recours aux produits phytosanitaires et aux passages de pulvérisateurs, et ce, en toute sécurité pour la vendange. Un dispositif automatisé pour protéger les vignes viti-tunnel® est un dispositif de mise à l’abri automatique des rangs de vigne pendant les pluies et les évènements climatiques extrêmes.

Development of a novel UAV based approach for assessing the severity of spring frost and hail damages in vineyards

A solid feature of climate change is that the frequency and severity of weather extremes are increasing. Ranking European countries for the number of crop failures related to extreme events reports France on top followed by Italy and Spain (COM 2021).