Terroir 2020 banner
IVES 9 IVES Conference Series 9 Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Abstract

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

Methods and Results: Twenty-six representative wineries from 5 sub-regions of Ningxia were selected, and their vineyard soils were analysed at 20, 40, and 60 cm. Soil electric conductivity, organic carbon, available N, P, K, and total N, P, K, Na, Mg, Ca were quantified. Forty wines from those wineries made from cvs Cabernet Sauvignon, Cabernet Franc, Merlot, etc were also sampled, and their aroma profiles were analysed with GC-MS. Wine aromas showed large diversity, and principal component analysis showed that the key discrimination factor was the variety. Wines from Cabernet Sauvignon, Cabernet Franc, and Merlot exhibited distinct aroma profile, while vineyard location only had minor discrimination contribution. Further analysis for each variety revealed that the wines from Cabernet Sauvignon had quite distinct aromas from different vineyard locations. Soil chemical properties showed clear differences between regions, particularly the quantity of total N, K, and Mg. Correlation network analysis further identified strong and interesting linkages between specific aroma compounds and soil chemical properties. 

Conclusions: 

Our study found both wine aroma and soil chemical properties showing large diversity at Ningxia region. Grape variety plays a key role in determining wine aroma, while vineyard location with different soils can finely tune wine aroma for a given variety. 

Significance and Impact of the Study: Our results established the interaction between soil properties and genotypes on wine aromas. It highlights the importance to consider the matching between grape variety and soil type for designing future geographic regulation of wine production in Ningxia.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Zhanwu Dai1, Yangfu Kuang1, Xuenan Yao1, Huiqing Bai1, Shaohua Li1, Benhong Wu1*

1Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China

Contact the author

Keywords

Terroir, soil properties, wine aromas, Helan, Ningxia

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays.

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.