Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Abstract

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Methods and Results: Duplicate bottles of commercial Pinot noir wines from seven viticultural regions (six in Australian and one in New Zealand) were collected during 2013/4, either as donations from the wineries or via commercial sources. These regions represented a range of viticultural climates and vintages (2010-2013). These wines were analysed using NMR and ICP-MS by the Institut Heidger (Osann-Monzel, Germany) using their proprietary methods. Multivariate data analysis was then undertaken, trialling principal component analysis (PCA), multifactorial analysis, and analysis of coinertia. Interestingly, the results showed that the wines from varying terroirscould be best distinguished using PCA of their mineral content, and this statistical separation of the wines was clearest by geological region. Metabolomic analysis of the wines using NMR did not reveal any correlations with climate in terms of daytime temperatures. NMR metabolites did not prove useful for distinguishing wines by region, but interestingly there was a better separation based on Australian states, presumably reflecting the marked differences in climates. An analysis of coinertia suggested that the two datasets were not redundant.

Conclusions: 

ICP-MS appears to have promise in determining regionality in Australian and New Zealand wines, perhaps reflecting the extremes in geology often found in these two nations. Although the regional characteristics relating to contributions by terroir were frequently overwhelmed by strong local mineral contributions to the wines – possibly resulting from varying soil types, previous mining activity, and viticultural methods such as irrigation – these differences showed promise in providing distinctive ‘fingerprints’ for individual wines. NMR may also be useful for analysing and refining metabolite composition during winemaking and viticulture.

Significance and Impact of the Study: This was the first such study in Australia using both NMR and ICP-MS. The study provided valuable data for future ‘fingerprinting’ commercially bottled wines, as a precaution against wine ‘forgery.’

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gavin Duley1*, Laurence Dujourdy2, Susanne Klein3, Anna Werwein3, Christina Spartz3, Régis D. Gougeon4†, Dennis K. Taylor1

1 School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia
2 Service d’Appui à la Recherche, AgroSup Dijon, F-21000 Dijon, France
3 Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
4 Institut Universitaire de la Vigne et du Vin Jules Guyot, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France

†Senior co-authors

Contact the author

Keywords

NMR, IPCMS, PCA, Pinot Noir wine, terroir, metabolomics

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits.

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.