Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Abstract

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Methods and Results: Duplicate bottles of commercial Pinot noir wines from seven viticultural regions (six in Australian and one in New Zealand) were collected during 2013/4, either as donations from the wineries or via commercial sources. These regions represented a range of viticultural climates and vintages (2010-2013). These wines were analysed using NMR and ICP-MS by the Institut Heidger (Osann-Monzel, Germany) using their proprietary methods. Multivariate data analysis was then undertaken, trialling principal component analysis (PCA), multifactorial analysis, and analysis of coinertia. Interestingly, the results showed that the wines from varying terroirscould be best distinguished using PCA of their mineral content, and this statistical separation of the wines was clearest by geological region. Metabolomic analysis of the wines using NMR did not reveal any correlations with climate in terms of daytime temperatures. NMR metabolites did not prove useful for distinguishing wines by region, but interestingly there was a better separation based on Australian states, presumably reflecting the marked differences in climates. An analysis of coinertia suggested that the two datasets were not redundant.

Conclusions: 

ICP-MS appears to have promise in determining regionality in Australian and New Zealand wines, perhaps reflecting the extremes in geology often found in these two nations. Although the regional characteristics relating to contributions by terroir were frequently overwhelmed by strong local mineral contributions to the wines – possibly resulting from varying soil types, previous mining activity, and viticultural methods such as irrigation – these differences showed promise in providing distinctive ‘fingerprints’ for individual wines. NMR may also be useful for analysing and refining metabolite composition during winemaking and viticulture.

Significance and Impact of the Study: This was the first such study in Australia using both NMR and ICP-MS. The study provided valuable data for future ‘fingerprinting’ commercially bottled wines, as a precaution against wine ‘forgery.’

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gavin Duley1*, Laurence Dujourdy2, Susanne Klein3, Anna Werwein3, Christina Spartz3, Régis D. Gougeon4†, Dennis K. Taylor1

1 School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia
2 Service d’Appui à la Recherche, AgroSup Dijon, F-21000 Dijon, France
3 Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
4 Institut Universitaire de la Vigne et du Vin Jules Guyot, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France

†Senior co-authors

Contact the author

Keywords

NMR, IPCMS, PCA, Pinot Noir wine, terroir, metabolomics

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Volatile composition of base wines to obtain sparkling wines from seven autochthonous grape varieties from Castilla y León (Spain)

The aim of this work was to characterize the aromatic profile of white and rosé base wines for the elaboration of sparkling wines from seven autochthonous grape varieties of Castilla y León. The ‘Albarín’, ‘Godello’ and ‘Verdejo’ white grape cultivars contribute with more fruity notes than the ‘Viura’ and ‘Malvasía’ cultivars; and ‘Prieto picudo’ coloured grape cultivar has more fruity character than ‘Garnacha’.

Climate regionalization of Uruguayan viticulture for ecological sustainability

Ecological sustainability refers to developing viticulture in adequate environmental conditions.

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8).

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.