Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Abstract

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Methods and Results: Duplicate bottles of commercial Pinot noir wines from seven viticultural regions (six in Australian and one in New Zealand) were collected during 2013/4, either as donations from the wineries or via commercial sources. These regions represented a range of viticultural climates and vintages (2010-2013). These wines were analysed using NMR and ICP-MS by the Institut Heidger (Osann-Monzel, Germany) using their proprietary methods. Multivariate data analysis was then undertaken, trialling principal component analysis (PCA), multifactorial analysis, and analysis of coinertia. Interestingly, the results showed that the wines from varying terroirscould be best distinguished using PCA of their mineral content, and this statistical separation of the wines was clearest by geological region. Metabolomic analysis of the wines using NMR did not reveal any correlations with climate in terms of daytime temperatures. NMR metabolites did not prove useful for distinguishing wines by region, but interestingly there was a better separation based on Australian states, presumably reflecting the marked differences in climates. An analysis of coinertia suggested that the two datasets were not redundant.

Conclusions: 

ICP-MS appears to have promise in determining regionality in Australian and New Zealand wines, perhaps reflecting the extremes in geology often found in these two nations. Although the regional characteristics relating to contributions by terroir were frequently overwhelmed by strong local mineral contributions to the wines – possibly resulting from varying soil types, previous mining activity, and viticultural methods such as irrigation – these differences showed promise in providing distinctive ‘fingerprints’ for individual wines. NMR may also be useful for analysing and refining metabolite composition during winemaking and viticulture.

Significance and Impact of the Study: This was the first such study in Australia using both NMR and ICP-MS. The study provided valuable data for future ‘fingerprinting’ commercially bottled wines, as a precaution against wine ‘forgery.’

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gavin Duley1*, Laurence Dujourdy2, Susanne Klein3, Anna Werwein3, Christina Spartz3, Régis D. Gougeon4†, Dennis K. Taylor1

1 School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia
2 Service d’Appui à la Recherche, AgroSup Dijon, F-21000 Dijon, France
3 Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
4 Institut Universitaire de la Vigne et du Vin Jules Guyot, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France

†Senior co-authors

Contact the author

Keywords

NMR, IPCMS, PCA, Pinot Noir wine, terroir, metabolomics

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

French AOC positioning and their concepts and extension to other products

Constitue une appellation d’origine “la dénomination géographique d’un pays, d’une région ou d’une localité servant à désigner un produit qui en est originaire, et dont la qualité ou les caractères sont dus exclusivement ou essentiellement au milieu géographique, comprenant les facteurs naturels et les facteurs humains …”

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].