Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Abstract

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Methods and Results: Duplicate bottles of commercial Pinot noir wines from seven viticultural regions (six in Australian and one in New Zealand) were collected during 2013/4, either as donations from the wineries or via commercial sources. These regions represented a range of viticultural climates and vintages (2010-2013). These wines were analysed using NMR and ICP-MS by the Institut Heidger (Osann-Monzel, Germany) using their proprietary methods. Multivariate data analysis was then undertaken, trialling principal component analysis (PCA), multifactorial analysis, and analysis of coinertia. Interestingly, the results showed that the wines from varying terroirscould be best distinguished using PCA of their mineral content, and this statistical separation of the wines was clearest by geological region. Metabolomic analysis of the wines using NMR did not reveal any correlations with climate in terms of daytime temperatures. NMR metabolites did not prove useful for distinguishing wines by region, but interestingly there was a better separation based on Australian states, presumably reflecting the marked differences in climates. An analysis of coinertia suggested that the two datasets were not redundant.

Conclusions: 

ICP-MS appears to have promise in determining regionality in Australian and New Zealand wines, perhaps reflecting the extremes in geology often found in these two nations. Although the regional characteristics relating to contributions by terroir were frequently overwhelmed by strong local mineral contributions to the wines – possibly resulting from varying soil types, previous mining activity, and viticultural methods such as irrigation – these differences showed promise in providing distinctive ‘fingerprints’ for individual wines. NMR may also be useful for analysing and refining metabolite composition during winemaking and viticulture.

Significance and Impact of the Study: This was the first such study in Australia using both NMR and ICP-MS. The study provided valuable data for future ‘fingerprinting’ commercially bottled wines, as a precaution against wine ‘forgery.’

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gavin Duley1*, Laurence Dujourdy2, Susanne Klein3, Anna Werwein3, Christina Spartz3, Régis D. Gougeon4†, Dennis K. Taylor1

1 School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia
2 Service d’Appui à la Recherche, AgroSup Dijon, F-21000 Dijon, France
3 Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
4 Institut Universitaire de la Vigne et du Vin Jules Guyot, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France

†Senior co-authors

Contact the author

Keywords

NMR, IPCMS, PCA, Pinot Noir wine, terroir, metabolomics

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Agrovoltaic on vineyards: preliminary resuls on seasonal and diurnal whole-canopy gas exchange

Context and purpose of the study. Albeit standing as a fashionable research topic dual use of land as viti-voltaic still lacks of fundamental knowledge about whole canopy grapevine response to altered microclimate under panels vs open field conditions.

Can plant shaking reduce the incidence of Botrytis?

Wine production is expanding in Scandinavia with a focus on organic growing, and Solaris becoming the signature grape of the region.

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.