Terroir 2020 banner
IVES 9 IVES Conference Series 9 Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Abstract

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Methods and Results: An Albariño vineyard in Frederick County, Maryland was previously terraced, resulting in topsoil (A-horizon) thickness differences while other factors are constant (weather, vine spacing, training, cultivar/clone/rootstock). We surveyed topsoil thickness along two transects using a combination of hand dug pits and soil probes, determining “topsoil” based on soil color and structure. The topsoil thickness we surveyed ranged from 0 to 30 cm. For reference, the vineyard’s mapped soil series, Mt. Zion, has 13 to 15 cm of topsoil.

Each panel of six vines served as an experimental unit, and we sampled 29 panels total corresponding to the topsoil measurement locations in 2019. We collected dormant pruning weights as well as cluster compactness (berries per cm rachis) and fruit chemistry (pH, titratable acidity, and °Brix). Fruit from vines growing in thinner topsoil had significantly lower titratable acidity and higher °Brix (R= 0.24). The correlation between topsoil and fruit titratable acidity was particularly strong, with topsoil thickness explaining 66.1% of variation in titratable acidity. There was not a significant relationship between topsoil thickness and fruit pH, but vines in thinner topsoil exhibited looser clusters (R2 = 0.27) and lower pruning weights (R= 0.58). 

Conclusions: 

Preliminary results suggest that fruit from vines growing in thinner topsoil ripen earlier. Compared to vines growing in thicker topsoil, they had lower titratable acidity and higher °Brix. Thinner topsoil also resulted in lower dormant pruning weights which indicates smaller vines, and looser clusters which may help with disease pressure. Understanding topsoil’s contribution to vine growth and fruit composition will help inform decisions about vineyard site selection, soil management, harvest time, and the overall terroir of a site. 

Significance and Impact of the Study: The viticulture industry in the Mid-Atlantic United States is growing, but their ability to support high-quality wine grape production may be hindered by certain soil properties. Many Mid-Atlantic soils are highly fertile and have relatively high available water holding capacity. In combination with the Mid-Atlantic’s humid continental climate, these soil properties can provide excessive plant-available water and nutrients to grapevines. Such excesses often produce vigorous vegetative growth (i.e., vigor) and detrimentally impact fruit composition and potential wine quality. Topsoil management could be an approach for growers to influence hydrology and fertility of vineyard soil. Choosing sites with less topsoil and/or managing topsoil thickness may help growers optimize their fruit chemistry and potentially predict and/or influence fruit ripening. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jaclyn C. Fiola*, Ryan D. Stewart, Tony K. Wolf, and Greg K. Evanylo

School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, VA 24061

Contact the author

Keywords

Soil fertility, soil hydrology, soil management, Mid-Atlantic 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Conventions and methods towards landscape quality: an application in the Douro (Portugal)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Analyse du rôle du terroir dans la définition d’une appellation d’origine

In France, the definition of appellations of origins is entrusted to the Institut National des Appellations d’Origine. (‘NAO). With the increase in price of appellations of origin vine­yards and considering the interests at stake, Institut National des Appellations d’Origine and the Institut National de Recherche Agronomique (INRA) established a work group in 1993 in order to study the “terroir-wine” relationship as precisely as possible, taking into account the knowledge acquired by researchers of the INRA and the experience in the field of the agents of the INAO.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.