Terroir 2020 banner
IVES 9 IVES Conference Series 9 Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Abstract

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Methods and Results: An Albariño vineyard in Frederick County, Maryland was previously terraced, resulting in topsoil (A-horizon) thickness differences while other factors are constant (weather, vine spacing, training, cultivar/clone/rootstock). We surveyed topsoil thickness along two transects using a combination of hand dug pits and soil probes, determining “topsoil” based on soil color and structure. The topsoil thickness we surveyed ranged from 0 to 30 cm. For reference, the vineyard’s mapped soil series, Mt. Zion, has 13 to 15 cm of topsoil.

Each panel of six vines served as an experimental unit, and we sampled 29 panels total corresponding to the topsoil measurement locations in 2019. We collected dormant pruning weights as well as cluster compactness (berries per cm rachis) and fruit chemistry (pH, titratable acidity, and °Brix). Fruit from vines growing in thinner topsoil had significantly lower titratable acidity and higher °Brix (R= 0.24). The correlation between topsoil and fruit titratable acidity was particularly strong, with topsoil thickness explaining 66.1% of variation in titratable acidity. There was not a significant relationship between topsoil thickness and fruit pH, but vines in thinner topsoil exhibited looser clusters (R2 = 0.27) and lower pruning weights (R= 0.58). 

Conclusions: 

Preliminary results suggest that fruit from vines growing in thinner topsoil ripen earlier. Compared to vines growing in thicker topsoil, they had lower titratable acidity and higher °Brix. Thinner topsoil also resulted in lower dormant pruning weights which indicates smaller vines, and looser clusters which may help with disease pressure. Understanding topsoil’s contribution to vine growth and fruit composition will help inform decisions about vineyard site selection, soil management, harvest time, and the overall terroir of a site. 

Significance and Impact of the Study: The viticulture industry in the Mid-Atlantic United States is growing, but their ability to support high-quality wine grape production may be hindered by certain soil properties. Many Mid-Atlantic soils are highly fertile and have relatively high available water holding capacity. In combination with the Mid-Atlantic’s humid continental climate, these soil properties can provide excessive plant-available water and nutrients to grapevines. Such excesses often produce vigorous vegetative growth (i.e., vigor) and detrimentally impact fruit composition and potential wine quality. Topsoil management could be an approach for growers to influence hydrology and fertility of vineyard soil. Choosing sites with less topsoil and/or managing topsoil thickness may help growers optimize their fruit chemistry and potentially predict and/or influence fruit ripening. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jaclyn C. Fiola*, Ryan D. Stewart, Tony K. Wolf, and Greg K. Evanylo

School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, VA 24061

Contact the author

Keywords

Soil fertility, soil hydrology, soil management, Mid-Atlantic 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.