Terroir 2020 banner
IVES 9 IVES Conference Series 9 Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Abstract

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Methods and Results: An Albariño vineyard in Frederick County, Maryland was previously terraced, resulting in topsoil (A-horizon) thickness differences while other factors are constant (weather, vine spacing, training, cultivar/clone/rootstock). We surveyed topsoil thickness along two transects using a combination of hand dug pits and soil probes, determining “topsoil” based on soil color and structure. The topsoil thickness we surveyed ranged from 0 to 30 cm. For reference, the vineyard’s mapped soil series, Mt. Zion, has 13 to 15 cm of topsoil.

Each panel of six vines served as an experimental unit, and we sampled 29 panels total corresponding to the topsoil measurement locations in 2019. We collected dormant pruning weights as well as cluster compactness (berries per cm rachis) and fruit chemistry (pH, titratable acidity, and °Brix). Fruit from vines growing in thinner topsoil had significantly lower titratable acidity and higher °Brix (R= 0.24). The correlation between topsoil and fruit titratable acidity was particularly strong, with topsoil thickness explaining 66.1% of variation in titratable acidity. There was not a significant relationship between topsoil thickness and fruit pH, but vines in thinner topsoil exhibited looser clusters (R2 = 0.27) and lower pruning weights (R= 0.58). 

Conclusions: 

Preliminary results suggest that fruit from vines growing in thinner topsoil ripen earlier. Compared to vines growing in thicker topsoil, they had lower titratable acidity and higher °Brix. Thinner topsoil also resulted in lower dormant pruning weights which indicates smaller vines, and looser clusters which may help with disease pressure. Understanding topsoil’s contribution to vine growth and fruit composition will help inform decisions about vineyard site selection, soil management, harvest time, and the overall terroir of a site. 

Significance and Impact of the Study: The viticulture industry in the Mid-Atlantic United States is growing, but their ability to support high-quality wine grape production may be hindered by certain soil properties. Many Mid-Atlantic soils are highly fertile and have relatively high available water holding capacity. In combination with the Mid-Atlantic’s humid continental climate, these soil properties can provide excessive plant-available water and nutrients to grapevines. Such excesses often produce vigorous vegetative growth (i.e., vigor) and detrimentally impact fruit composition and potential wine quality. Topsoil management could be an approach for growers to influence hydrology and fertility of vineyard soil. Choosing sites with less topsoil and/or managing topsoil thickness may help growers optimize their fruit chemistry and potentially predict and/or influence fruit ripening. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jaclyn C. Fiola*, Ryan D. Stewart, Tony K. Wolf, and Greg K. Evanylo

School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, VA 24061

Contact the author

Keywords

Soil fertility, soil hydrology, soil management, Mid-Atlantic 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Consumo hídrico de la vid, c.v. Listán negro, en la comarca de Tacoronte-Acentejo. Tenerife

Durante el bienio 1998-1999 se estudió el uso consuntivo de cultivos de viña var. Listán negro, en cuatro fincas situadas en la Comarca de Tacoronte-Acentejo, en la isla de Tenerife.

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.