Terroir 2020 banner
IVES 9 IVES Conference Series 9 Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Abstract

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Methods and Results: An Albariño vineyard in Frederick County, Maryland was previously terraced, resulting in topsoil (A-horizon) thickness differences while other factors are constant (weather, vine spacing, training, cultivar/clone/rootstock). We surveyed topsoil thickness along two transects using a combination of hand dug pits and soil probes, determining “topsoil” based on soil color and structure. The topsoil thickness we surveyed ranged from 0 to 30 cm. For reference, the vineyard’s mapped soil series, Mt. Zion, has 13 to 15 cm of topsoil.

Each panel of six vines served as an experimental unit, and we sampled 29 panels total corresponding to the topsoil measurement locations in 2019. We collected dormant pruning weights as well as cluster compactness (berries per cm rachis) and fruit chemistry (pH, titratable acidity, and °Brix). Fruit from vines growing in thinner topsoil had significantly lower titratable acidity and higher °Brix (R= 0.24). The correlation between topsoil and fruit titratable acidity was particularly strong, with topsoil thickness explaining 66.1% of variation in titratable acidity. There was not a significant relationship between topsoil thickness and fruit pH, but vines in thinner topsoil exhibited looser clusters (R2 = 0.27) and lower pruning weights (R= 0.58). 

Conclusions: 

Preliminary results suggest that fruit from vines growing in thinner topsoil ripen earlier. Compared to vines growing in thicker topsoil, they had lower titratable acidity and higher °Brix. Thinner topsoil also resulted in lower dormant pruning weights which indicates smaller vines, and looser clusters which may help with disease pressure. Understanding topsoil’s contribution to vine growth and fruit composition will help inform decisions about vineyard site selection, soil management, harvest time, and the overall terroir of a site. 

Significance and Impact of the Study: The viticulture industry in the Mid-Atlantic United States is growing, but their ability to support high-quality wine grape production may be hindered by certain soil properties. Many Mid-Atlantic soils are highly fertile and have relatively high available water holding capacity. In combination with the Mid-Atlantic’s humid continental climate, these soil properties can provide excessive plant-available water and nutrients to grapevines. Such excesses often produce vigorous vegetative growth (i.e., vigor) and detrimentally impact fruit composition and potential wine quality. Topsoil management could be an approach for growers to influence hydrology and fertility of vineyard soil. Choosing sites with less topsoil and/or managing topsoil thickness may help growers optimize their fruit chemistry and potentially predict and/or influence fruit ripening. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jaclyn C. Fiola*, Ryan D. Stewart, Tony K. Wolf, and Greg K. Evanylo

School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, VA 24061

Contact the author

Keywords

Soil fertility, soil hydrology, soil management, Mid-Atlantic 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.