Terroir 2020 banner
IVES 9 IVES Conference Series 9 Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Abstract

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Methods and Results: An Albariño vineyard in Frederick County, Maryland was previously terraced, resulting in topsoil (A-horizon) thickness differences while other factors are constant (weather, vine spacing, training, cultivar/clone/rootstock). We surveyed topsoil thickness along two transects using a combination of hand dug pits and soil probes, determining “topsoil” based on soil color and structure. The topsoil thickness we surveyed ranged from 0 to 30 cm. For reference, the vineyard’s mapped soil series, Mt. Zion, has 13 to 15 cm of topsoil.

Each panel of six vines served as an experimental unit, and we sampled 29 panels total corresponding to the topsoil measurement locations in 2019. We collected dormant pruning weights as well as cluster compactness (berries per cm rachis) and fruit chemistry (pH, titratable acidity, and °Brix). Fruit from vines growing in thinner topsoil had significantly lower titratable acidity and higher °Brix (R= 0.24). The correlation between topsoil and fruit titratable acidity was particularly strong, with topsoil thickness explaining 66.1% of variation in titratable acidity. There was not a significant relationship between topsoil thickness and fruit pH, but vines in thinner topsoil exhibited looser clusters (R2 = 0.27) and lower pruning weights (R= 0.58). 

Conclusions: 

Preliminary results suggest that fruit from vines growing in thinner topsoil ripen earlier. Compared to vines growing in thicker topsoil, they had lower titratable acidity and higher °Brix. Thinner topsoil also resulted in lower dormant pruning weights which indicates smaller vines, and looser clusters which may help with disease pressure. Understanding topsoil’s contribution to vine growth and fruit composition will help inform decisions about vineyard site selection, soil management, harvest time, and the overall terroir of a site. 

Significance and Impact of the Study: The viticulture industry in the Mid-Atlantic United States is growing, but their ability to support high-quality wine grape production may be hindered by certain soil properties. Many Mid-Atlantic soils are highly fertile and have relatively high available water holding capacity. In combination with the Mid-Atlantic’s humid continental climate, these soil properties can provide excessive plant-available water and nutrients to grapevines. Such excesses often produce vigorous vegetative growth (i.e., vigor) and detrimentally impact fruit composition and potential wine quality. Topsoil management could be an approach for growers to influence hydrology and fertility of vineyard soil. Choosing sites with less topsoil and/or managing topsoil thickness may help growers optimize their fruit chemistry and potentially predict and/or influence fruit ripening. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jaclyn C. Fiola*, Ryan D. Stewart, Tony K. Wolf, and Greg K. Evanylo

School of Plant and Environmental Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, VA 24061

Contact the author

Keywords

Soil fertility, soil hydrology, soil management, Mid-Atlantic 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir

NAVIC–20 years of a lean management model for wine business R&D

Considering That Innovation Supports A Company’s Competitive Advantage And Drive Higher Profits (Dogru A. & Peyrette J., 2022), A Key Challenge Of Wine Companies Is Getting Practitioners To Understand That Innovation-Related Wine Research Increases The Likelihood Of Competitive Advantage, Bringing Financial Success. A Continued And Enhanced Investment In Research Is, Thus, A Prerequisite For Commercial Success In Today’s Globalized And Competitive Wine Industry (Høj P., Pretorius I.S., & Day R., 2003).

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3