Terroir 2020 banner
IVES 9 IVES Conference Series 9 Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Abstract

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions. This study was aimed to model the dynamics of current year’s above‐ground biomass in grapevine. Furthermore, the development of a relatively simple growth modelling framework aimed at the derivation of cardinal air temperatures for growth in grapevine.

Methods and Results: Trials were carried out over three growing seasons in field conditions with four grapevine cultivars. To compare the differences of growth-allocation models among cultivars, the non-linear extra-sums-of-squares method was used. Using measurements of mean daily air temperature and dry mass increments a beta-function model was fitted to the data and used to estimate cardinal air temperatures. Shoot growth and biomass allocation differed significantly among cultivars. The application of the non-linear extra-sums-of-squares procedure demonstrated to be a feasible way of growth models statistical comparison among cultivars. The results of this study highlight parameters most involved in the phenotypic variability of shoot growth. Variations among cultivars result from environmental and genetic factors. The temperature response functions obtained, confirm the initial working hypothesis that because the varieties may have either different temperature optima or different thresholds that a unifying model cannot be achieved.

Conclusions: 

These results suggest that some caution should be taken when incorporating shoot development and biomass partitioning coefficients in a growth model. Use of common coefficients estimates for all cultivars for dynamic modelling approaches, in fact, may result in a poor representation of the data early or late during the course of the season.

Significance and Impact of the Study: The described approach can be used to account for complex variation in seasonal growth patterns and provides insight into how well a cultivar may be matched to a particular site.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Franco Meggio* and Andrea Pitacco

Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy

Contact the author

Keywords

Above-ground grapevine biomass, growth model, biomass partitioning coefficients 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

Aroma profile of Tempranillo tropical red wines from different seasons in the São Francisco valley, northeast of Brazil

Aromatic characteristics of wines are strongly influenced by agronomical and enological factors, depending of the climate, cultivar and winemaking process. Tropical wines are a new concept of vitiviniculture that is being developped in the Northeast of Brazil since the 80’s, located between 8-9º latitude of the South Hemisphere, where the second most important cultivar used for reds is Tempranillo. In this condition, vines produce grapes and enologists elaborate wines twice a year, because high temperatures, solar radiation and water availability for irrigation.

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality.

Valutazione dell’equilibrio vegeto-produttivo con metodiche di proximal sensing

Nel biennio 2008-2009, nell’ambito di un progetto multidisciplinare coordinato e finanziato dal Consorzio Tuscania, 4 vigneti in differenti zone della Toscana sono stati monitorati con strumenti di proximal sensing al fine di valutare la variabilità riscontrabile e ottenere delle indicazioni sulle risposte vegetative delle piante e quanti-qualitative delle produzioni.

SO2 consumption in white wine oxidation: approaches to low input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in maintaining wine quality during its shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.