Terroir 2020 banner
IVES 9 IVES Conference Series 9 Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Abstract

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions. This study was aimed to model the dynamics of current year’s above‐ground biomass in grapevine. Furthermore, the development of a relatively simple growth modelling framework aimed at the derivation of cardinal air temperatures for growth in grapevine.

Methods and Results: Trials were carried out over three growing seasons in field conditions with four grapevine cultivars. To compare the differences of growth-allocation models among cultivars, the non-linear extra-sums-of-squares method was used. Using measurements of mean daily air temperature and dry mass increments a beta-function model was fitted to the data and used to estimate cardinal air temperatures. Shoot growth and biomass allocation differed significantly among cultivars. The application of the non-linear extra-sums-of-squares procedure demonstrated to be a feasible way of growth models statistical comparison among cultivars. The results of this study highlight parameters most involved in the phenotypic variability of shoot growth. Variations among cultivars result from environmental and genetic factors. The temperature response functions obtained, confirm the initial working hypothesis that because the varieties may have either different temperature optima or different thresholds that a unifying model cannot be achieved.

Conclusions: 

These results suggest that some caution should be taken when incorporating shoot development and biomass partitioning coefficients in a growth model. Use of common coefficients estimates for all cultivars for dynamic modelling approaches, in fact, may result in a poor representation of the data early or late during the course of the season.

Significance and Impact of the Study: The described approach can be used to account for complex variation in seasonal growth patterns and provides insight into how well a cultivar may be matched to a particular site.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Franco Meggio* and Andrea Pitacco

Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy

Contact the author

Keywords

Above-ground grapevine biomass, growth model, biomass partitioning coefficients 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of these compounds highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and free norisprenoids (2.60 to 11.46 μg/kg FW).

Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

The aim was to study the impact of structural features in the polysaccharide moiety of mannoproteins on their interaction with polyphenols and the formation of colloidal aggregates.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.