Terroir 2020 banner
IVES 9 IVES Conference Series 9 Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Abstract

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions. This study was aimed to model the dynamics of current year’s above‐ground biomass in grapevine. Furthermore, the development of a relatively simple growth modelling framework aimed at the derivation of cardinal air temperatures for growth in grapevine.

Methods and Results: Trials were carried out over three growing seasons in field conditions with four grapevine cultivars. To compare the differences of growth-allocation models among cultivars, the non-linear extra-sums-of-squares method was used. Using measurements of mean daily air temperature and dry mass increments a beta-function model was fitted to the data and used to estimate cardinal air temperatures. Shoot growth and biomass allocation differed significantly among cultivars. The application of the non-linear extra-sums-of-squares procedure demonstrated to be a feasible way of growth models statistical comparison among cultivars. The results of this study highlight parameters most involved in the phenotypic variability of shoot growth. Variations among cultivars result from environmental and genetic factors. The temperature response functions obtained, confirm the initial working hypothesis that because the varieties may have either different temperature optima or different thresholds that a unifying model cannot be achieved.

Conclusions: 

These results suggest that some caution should be taken when incorporating shoot development and biomass partitioning coefficients in a growth model. Use of common coefficients estimates for all cultivars for dynamic modelling approaches, in fact, may result in a poor representation of the data early or late during the course of the season.

Significance and Impact of the Study: The described approach can be used to account for complex variation in seasonal growth patterns and provides insight into how well a cultivar may be matched to a particular site.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Franco Meggio* and Andrea Pitacco

Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy

Contact the author

Keywords

Above-ground grapevine biomass, growth model, biomass partitioning coefficients 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Délimitation des terroirs dans les A.O. Rueda et Toro (Castilla y León-Espagne)

La délimitation et la caractérisation des zones viticoles posent en Espagne des problèmes spécifiques non seulement dus aux caractéristiques propres au territoire mais aussi à la dimension, la distribution et l’indice d’occupation viticole dans les appellations d’origine.

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

An organoleptic defect, called fresh mushrooms off-flavor, appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, octan-3-ol and octen-3-ol

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.