Terroir 2020 banner
IVES 9 IVES Conference Series 9 Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Abstract

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions. This study was aimed to model the dynamics of current year’s above‐ground biomass in grapevine. Furthermore, the development of a relatively simple growth modelling framework aimed at the derivation of cardinal air temperatures for growth in grapevine.

Methods and Results: Trials were carried out over three growing seasons in field conditions with four grapevine cultivars. To compare the differences of growth-allocation models among cultivars, the non-linear extra-sums-of-squares method was used. Using measurements of mean daily air temperature and dry mass increments a beta-function model was fitted to the data and used to estimate cardinal air temperatures. Shoot growth and biomass allocation differed significantly among cultivars. The application of the non-linear extra-sums-of-squares procedure demonstrated to be a feasible way of growth models statistical comparison among cultivars. The results of this study highlight parameters most involved in the phenotypic variability of shoot growth. Variations among cultivars result from environmental and genetic factors. The temperature response functions obtained, confirm the initial working hypothesis that because the varieties may have either different temperature optima or different thresholds that a unifying model cannot be achieved.

Conclusions: 

These results suggest that some caution should be taken when incorporating shoot development and biomass partitioning coefficients in a growth model. Use of common coefficients estimates for all cultivars for dynamic modelling approaches, in fact, may result in a poor representation of the data early or late during the course of the season.

Significance and Impact of the Study: The described approach can be used to account for complex variation in seasonal growth patterns and provides insight into how well a cultivar may be matched to a particular site.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Franco Meggio* and Andrea Pitacco

Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy

Contact the author

Keywords

Above-ground grapevine biomass, growth model, biomass partitioning coefficients 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.

Everything else, it’s work ”Socio-cultural dimensions of terroir among Bordeaux winemakers

In 2010, the OIV adopted a resolution that defines ‘terroir’. The OIV definition understands terroir as the result of the interactions between the physical specificities of a space and human labor, with an emphasis on the subsequently produced collective knowledge (OIV-VITI 333-2010); by doing so, it alludes to the social and cultural dimensions of terroir.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.