Terroir 2020 banner
IVES 9 IVES Conference Series 9 Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Abstract

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions. This study was aimed to model the dynamics of current year’s above‐ground biomass in grapevine. Furthermore, the development of a relatively simple growth modelling framework aimed at the derivation of cardinal air temperatures for growth in grapevine.

Methods and Results: Trials were carried out over three growing seasons in field conditions with four grapevine cultivars. To compare the differences of growth-allocation models among cultivars, the non-linear extra-sums-of-squares method was used. Using measurements of mean daily air temperature and dry mass increments a beta-function model was fitted to the data and used to estimate cardinal air temperatures. Shoot growth and biomass allocation differed significantly among cultivars. The application of the non-linear extra-sums-of-squares procedure demonstrated to be a feasible way of growth models statistical comparison among cultivars. The results of this study highlight parameters most involved in the phenotypic variability of shoot growth. Variations among cultivars result from environmental and genetic factors. The temperature response functions obtained, confirm the initial working hypothesis that because the varieties may have either different temperature optima or different thresholds that a unifying model cannot be achieved.

Conclusions: 

These results suggest that some caution should be taken when incorporating shoot development and biomass partitioning coefficients in a growth model. Use of common coefficients estimates for all cultivars for dynamic modelling approaches, in fact, may result in a poor representation of the data early or late during the course of the season.

Significance and Impact of the Study: The described approach can be used to account for complex variation in seasonal growth patterns and provides insight into how well a cultivar may be matched to a particular site.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Franco Meggio* and Andrea Pitacco

Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università 16 35020 – Legnaro (PD), Italy

Contact the author

Keywords

Above-ground grapevine biomass, growth model, biomass partitioning coefficients 

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Heatwaves and grapevine yield in the Douro region, crop model simulations

Heatwaves or extreme heat events can be particularly harmful to agriculture. Grapevines grown in the Douro winemaking region are particularly exposed to this threat, due to the specificities of the already warm and dry climatic conditions. Furthermore, climate change simulations point to an increase in the frequency of occurrence of these extreme heat events, therefore posing a major challenge to winegrowers in the Mediterranean type climates. The current study focuses on the application of the STICS crop model to assess the potential impacts of heatwaves in grapevine yields over the Douro valley winemaking region. For this purpose, STICS was applied to grapevines using high-resolution weather, soil and terrain datasets over the Douro. To assess the impact of heatwaves, the weather dataset (1989-2005) was artificially modified, generating periods with anomalously high temperatures (+5 ºC), at certain onset dates and with specific durations (from 5 to 9 days). The model was run with this modified weather dataset and results were compared to the original unmodified runs. The results show that heatwaves can have a very strong impact on grapevine yields, strongly depending on the onset dates and duration of the heatwaves. The highest negative impacts may result in a decrease in the yield by up to -35% in some regions. Despite some uncertainties inherent to the current modelling assessment, the present study highlights the negative impacts of heatwaves on viticultural yields in the Douro region, which is critical information for stakeholders within the winemaking sector for planning suitable adaptation measures.