Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Abstract

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018). The experimental design minimizes sources of potential variation by using a single scion clone of Pinot noir and by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery, in which fermentations are highly controlled across vineyard replicates, vineyards, and vintages.  The work aims to begin to unravel vineyard site from vintage contributions in elemental composition of wines.   

Grape clusters were hand-harvested from vineyards which span a distance of more than 1400 km.  Eight American Viticultural Areas (AVAs) are represented in this work: Santa Rita Hills, Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, Anderson Valley and Willamette Valley.  Fruit was destemmed only and inoculated with Saccharomyces cerevisiae yeast. Upon completion of inoculated MLF, wines were stored in stainless steel vessels until sampling for characterization.  Forty-seven elements were profiled in a mass range of 7 to 238 m/z by using inductively coupled plasma–mass spectrometry (ICP-MS).  

Thirty elements have been quantified in the wines from at least half of the sites by ICP-MS. Principal component analysis (PCA) was used to characterize vineyards using only significant elements identified by an analysis of variance (ANOVA) measuring effects of vineyard.  Across multiple vintages, wines from some AVAs were consistently clustered by elemental composition profile, such as those within Santa Maria Valley and Arroyo Seco.  Other vineyard locations, however, were reproducibly more similar in elemental composition to sites in other AVAs than those within their AVA.  Differences in profiles within an AVA suggest that factors such as distinctive soil composition or conditions, or microclimate have an effect.  Overall, separation and clustering of wines by elemental composition appears consistent across vintages in this experiment. These results quantitatively demonstrate reproducibility and differentiation of chemical composition of wines across multiple vintages, which is an important component of terroir. Details continue to be unravelled in future work to elucidate consistency of elemental profile from sites across vintages, such as correlations with soil composition and site microclimate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Maisa Lima, Desmon Hernandez, Ron Runnebaum*

University of California – Davis, Davis, United States

Contact the author

Keywords

Wine elemental composition, Pinot noir, American Viticultural Areas, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Kegged wine as a sustainable alternative: impact on conservation and sensory quality

Wine is not just a beverage; it represents an entire ecosystem in winemaking regions and is deeply linked to economic, social, and environmental factors.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Climate regionalization of Uruguayan viticulture for ecological sustainability

Ecological sustainability refers to developing viticulture in adequate environmental conditions.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

Influence de la nutrition potassique sur le manque d’acidité des vins issus du cépage Negrette

A worrying drop in the acidity of wines has been observed in many wine regions, such as Bordeaux (Merlot), Burgundy (Pinot Noir), Côtes-du-Rhône (Grenache) or Rioja (Tempranillo). This lack of acidity is particularly marked in the Midi-Pyrenean vineyards of the Côtes du Frontonnais (Tournier, 1993). However, the acidity of a wine is one of the main factors of its quality, in fact, a low acidity combined with an insufficient tannic structure leads to rapid oxidation of wines and makes them age prematurely.