Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Abstract

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018). The experimental design minimizes sources of potential variation by using a single scion clone of Pinot noir and by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery, in which fermentations are highly controlled across vineyard replicates, vineyards, and vintages.  The work aims to begin to unravel vineyard site from vintage contributions in elemental composition of wines.   

Grape clusters were hand-harvested from vineyards which span a distance of more than 1400 km.  Eight American Viticultural Areas (AVAs) are represented in this work: Santa Rita Hills, Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, Anderson Valley and Willamette Valley.  Fruit was destemmed only and inoculated with Saccharomyces cerevisiae yeast. Upon completion of inoculated MLF, wines were stored in stainless steel vessels until sampling for characterization.  Forty-seven elements were profiled in a mass range of 7 to 238 m/z by using inductively coupled plasma–mass spectrometry (ICP-MS).  

Thirty elements have been quantified in the wines from at least half of the sites by ICP-MS. Principal component analysis (PCA) was used to characterize vineyards using only significant elements identified by an analysis of variance (ANOVA) measuring effects of vineyard.  Across multiple vintages, wines from some AVAs were consistently clustered by elemental composition profile, such as those within Santa Maria Valley and Arroyo Seco.  Other vineyard locations, however, were reproducibly more similar in elemental composition to sites in other AVAs than those within their AVA.  Differences in profiles within an AVA suggest that factors such as distinctive soil composition or conditions, or microclimate have an effect.  Overall, separation and clustering of wines by elemental composition appears consistent across vintages in this experiment. These results quantitatively demonstrate reproducibility and differentiation of chemical composition of wines across multiple vintages, which is an important component of terroir. Details continue to be unravelled in future work to elucidate consistency of elemental profile from sites across vintages, such as correlations with soil composition and site microclimate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Maisa Lima, Desmon Hernandez, Ron Runnebaum*

University of California – Davis, Davis, United States

Contact the author

Keywords

Wine elemental composition, Pinot noir, American Viticultural Areas, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible