Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Abstract

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018). The experimental design minimizes sources of potential variation by using a single scion clone of Pinot noir and by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery, in which fermentations are highly controlled across vineyard replicates, vineyards, and vintages.  The work aims to begin to unravel vineyard site from vintage contributions in elemental composition of wines.   

Grape clusters were hand-harvested from vineyards which span a distance of more than 1400 km.  Eight American Viticultural Areas (AVAs) are represented in this work: Santa Rita Hills, Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, Anderson Valley and Willamette Valley.  Fruit was destemmed only and inoculated with Saccharomyces cerevisiae yeast. Upon completion of inoculated MLF, wines were stored in stainless steel vessels until sampling for characterization.  Forty-seven elements were profiled in a mass range of 7 to 238 m/z by using inductively coupled plasma–mass spectrometry (ICP-MS).  

Thirty elements have been quantified in the wines from at least half of the sites by ICP-MS. Principal component analysis (PCA) was used to characterize vineyards using only significant elements identified by an analysis of variance (ANOVA) measuring effects of vineyard.  Across multiple vintages, wines from some AVAs were consistently clustered by elemental composition profile, such as those within Santa Maria Valley and Arroyo Seco.  Other vineyard locations, however, were reproducibly more similar in elemental composition to sites in other AVAs than those within their AVA.  Differences in profiles within an AVA suggest that factors such as distinctive soil composition or conditions, or microclimate have an effect.  Overall, separation and clustering of wines by elemental composition appears consistent across vintages in this experiment. These results quantitatively demonstrate reproducibility and differentiation of chemical composition of wines across multiple vintages, which is an important component of terroir. Details continue to be unravelled in future work to elucidate consistency of elemental profile from sites across vintages, such as correlations with soil composition and site microclimate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Maisa Lima, Desmon Hernandez, Ron Runnebaum*

University of California – Davis, Davis, United States

Contact the author

Keywords

Wine elemental composition, Pinot noir, American Viticultural Areas, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity