Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Abstract

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018). The experimental design minimizes sources of potential variation by using a single scion clone of Pinot noir and by using automated 200 L fermentation vessels at the UC Davis Teaching and Research Winery, in which fermentations are highly controlled across vineyard replicates, vineyards, and vintages.  The work aims to begin to unravel vineyard site from vintage contributions in elemental composition of wines.   

Grape clusters were hand-harvested from vineyards which span a distance of more than 1400 km.  Eight American Viticultural Areas (AVAs) are represented in this work: Santa Rita Hills, Santa Maria Valley, Arroyo Seco, Carneros, Sonoma Coast, Russian River Valley, Anderson Valley and Willamette Valley.  Fruit was destemmed only and inoculated with Saccharomyces cerevisiae yeast. Upon completion of inoculated MLF, wines were stored in stainless steel vessels until sampling for characterization.  Forty-seven elements were profiled in a mass range of 7 to 238 m/z by using inductively coupled plasma–mass spectrometry (ICP-MS).  

Thirty elements have been quantified in the wines from at least half of the sites by ICP-MS. Principal component analysis (PCA) was used to characterize vineyards using only significant elements identified by an analysis of variance (ANOVA) measuring effects of vineyard.  Across multiple vintages, wines from some AVAs were consistently clustered by elemental composition profile, such as those within Santa Maria Valley and Arroyo Seco.  Other vineyard locations, however, were reproducibly more similar in elemental composition to sites in other AVAs than those within their AVA.  Differences in profiles within an AVA suggest that factors such as distinctive soil composition or conditions, or microclimate have an effect.  Overall, separation and clustering of wines by elemental composition appears consistent across vintages in this experiment. These results quantitatively demonstrate reproducibility and differentiation of chemical composition of wines across multiple vintages, which is an important component of terroir. Details continue to be unravelled in future work to elucidate consistency of elemental profile from sites across vintages, such as correlations with soil composition and site microclimate.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Maisa Lima, Desmon Hernandez, Ron Runnebaum*

University of California – Davis, Davis, United States

Contact the author

Keywords

Wine elemental composition, Pinot noir, American Viticultural Areas, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Oenotannins addition in wine: can be the modulation of redox potential predictable?

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what