Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Abstract

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

Methods and Results: Sets of wines (22 to 28) from six prominent Australian Shiraz producing regions were assessed by groups of regional winemakers using a rapid sensory method called Pivot© Profile (PP) to obtain biplots of their sensory characteristics. Three or four samples from each region were selected using Agglomerative Hierarchical Clustering (AHC) analysis of the PP data resulting in a subset of twenty-two wines, which were then assessed using sensory descriptive analysis. A comprehensive chemical profile was also undertaken, including monoterpenes, norisoprenoids, low molecular weight sulphur compounds, oak volatiles, esters, and non-volatile compounds. Seventeen season-specific climate indices were also complied for each sample. Multivariate analyses (Principal Component Analysis and Partial Least-Squares Regression) showed that wines with stalky/cooked vegetal sensory attributes had higher cinnamate esters and dimethylsulfide, relating to a later budbreak and harvest day; wines with higher monoterpenes were associated with floral aroma; higher solar radiation was linked to higher tannin and colour density values, norisoprenoid and phenylethyl acetate concentrations and an association with dark fruit/dried fruit and tannin/colour attributes. 

Conclusions:

Distinctive sensory and chemical fingerprints exist for the specific regions studied, and the climatic profiles were strongly associated with key compounds influencing sensory differences. 

Significance and Impact of Study: Relating multiple site- and season-specific climate measures to chemical composition and characteristic sensory attributes of regional Australian Shiraz wines can help grape growers, winemakers and wine marketers better understand and promote the effect of place on their wines. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Wes Pearson1,2*, Leigh Schmidtke1, I. Leigh Francis2, Sijing Li1, Andrew Hall1,3, B. Thomas Carr1,4, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
3Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia
4Carr Consulting, 1215 Washington Ave., Wilmette, Illinois, USA

Contact the author

Keywords

Wine regionality, Australian Shiraz, wine sensory profile, wine chemical profile, wine climate profile

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters.

Towards understanding the mechanisms of resistance to grapevine Flavescence dorée

Flavescence dorée (FD) is a very serious grapevine disease, classified as quarantine in europe, where it appeared in the middle of the last century. It is associated with the presence of phytoplasmas, transmitted in the vineyard by a leafhopper of american origin, scaphoideus titanus. FD causes severe wine production losses and often leads to plant death. There are currently no alternative solutions to insecticide treatments against the vector and uprooting diseased vines.

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Application of zoning for wine production, digitalisation and traceability

Depuis la création des outils d’amélioration et de suivi de la qualité, le CREDO développe et réalise des zonages de potentialités viticoles.

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.