Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Abstract

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

Methods and Results: Sets of wines (22 to 28) from six prominent Australian Shiraz producing regions were assessed by groups of regional winemakers using a rapid sensory method called Pivot© Profile (PP) to obtain biplots of their sensory characteristics. Three or four samples from each region were selected using Agglomerative Hierarchical Clustering (AHC) analysis of the PP data resulting in a subset of twenty-two wines, which were then assessed using sensory descriptive analysis. A comprehensive chemical profile was also undertaken, including monoterpenes, norisoprenoids, low molecular weight sulphur compounds, oak volatiles, esters, and non-volatile compounds. Seventeen season-specific climate indices were also complied for each sample. Multivariate analyses (Principal Component Analysis and Partial Least-Squares Regression) showed that wines with stalky/cooked vegetal sensory attributes had higher cinnamate esters and dimethylsulfide, relating to a later budbreak and harvest day; wines with higher monoterpenes were associated with floral aroma; higher solar radiation was linked to higher tannin and colour density values, norisoprenoid and phenylethyl acetate concentrations and an association with dark fruit/dried fruit and tannin/colour attributes. 

Conclusions:

Distinctive sensory and chemical fingerprints exist for the specific regions studied, and the climatic profiles were strongly associated with key compounds influencing sensory differences. 

Significance and Impact of Study: Relating multiple site- and season-specific climate measures to chemical composition and characteristic sensory attributes of regional Australian Shiraz wines can help grape growers, winemakers and wine marketers better understand and promote the effect of place on their wines. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Wes Pearson1,2*, Leigh Schmidtke1, I. Leigh Francis2, Sijing Li1, Andrew Hall1,3, B. Thomas Carr1,4, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
3Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia
4Carr Consulting, 1215 Washington Ave., Wilmette, Illinois, USA

Contact the author

Keywords

Wine regionality, Australian Shiraz, wine sensory profile, wine chemical profile, wine climate profile

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Enhancing viticulture sustainability with biochar: results of field experiments in Italy

The increasing vulnerability of viticulture to climate change necessitates innovative solutions to improve its sustainability and resilience.

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.