Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Abstract

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

Methods and Results: Sets of wines (22 to 28) from six prominent Australian Shiraz producing regions were assessed by groups of regional winemakers using a rapid sensory method called Pivot© Profile (PP) to obtain biplots of their sensory characteristics. Three or four samples from each region were selected using Agglomerative Hierarchical Clustering (AHC) analysis of the PP data resulting in a subset of twenty-two wines, which were then assessed using sensory descriptive analysis. A comprehensive chemical profile was also undertaken, including monoterpenes, norisoprenoids, low molecular weight sulphur compounds, oak volatiles, esters, and non-volatile compounds. Seventeen season-specific climate indices were also complied for each sample. Multivariate analyses (Principal Component Analysis and Partial Least-Squares Regression) showed that wines with stalky/cooked vegetal sensory attributes had higher cinnamate esters and dimethylsulfide, relating to a later budbreak and harvest day; wines with higher monoterpenes were associated with floral aroma; higher solar radiation was linked to higher tannin and colour density values, norisoprenoid and phenylethyl acetate concentrations and an association with dark fruit/dried fruit and tannin/colour attributes. 

Conclusions:

Distinctive sensory and chemical fingerprints exist for the specific regions studied, and the climatic profiles were strongly associated with key compounds influencing sensory differences. 

Significance and Impact of Study: Relating multiple site- and season-specific climate measures to chemical composition and characteristic sensory attributes of regional Australian Shiraz wines can help grape growers, winemakers and wine marketers better understand and promote the effect of place on their wines. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Wes Pearson1,2*, Leigh Schmidtke1, I. Leigh Francis2, Sijing Li1, Andrew Hall1,3, B. Thomas Carr1,4, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia
3Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia
4Carr Consulting, 1215 Washington Ave., Wilmette, Illinois, USA

Contact the author

Keywords

Wine regionality, Australian Shiraz, wine sensory profile, wine chemical profile, wine climate profile

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making.