Terroir 2020 banner
IVES 9 IVES Conference Series 9 The dynamics of δ13C and δ18O in musts during berries development

The dynamics of δ13C and δ18O in musts during berries development

Abstract

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Methods and Results: The present work was carried out in 2019 with a set of seven varieties selected to monitor the aforementioned ratios in musts obtained during berries development: three of them red (Bobal, Tinto Velasco and Syrah), managed with irrigation, and the other three white (Airén, Malvar and Albillo Real) kept without irrigation; the seventh, Tempranillo, was managed with or without irrigation. 

Monitoring the dynamics of isotope ratios was undertaken through sampling of grapes carried out periodically, from shortly before closing cluster to maturity. In obtained musts, δ13C and δ18O were determined by mass spectrometry of isotope ratios.

The small changes observed between samples in δ13C in a specific variety did not seem to follow any pattern. In most cases, the comparisons of means performed showed no significant differences between samples. However, differences were observed between the two management systems: irrigated and rainfed; in dry conditions, with the stomatal closure, 13C isotopic discrimination declined during photosynthesis, and the ratio then increased.

This was not so with δ18O, where the comparisons of means always showed significant differences between samples. Dynamics of δ18O seemed to adapt, in this case, to a double curve pattern (cubic polynomial): the intense increase in the ratio of the first stages of fruit development was followed by a phase of slight decline, which lasted up to 15 or 20 days before harvest, at which point the ratio increased again. There were both inter-varietal and between management system differences: musts in early harvest varieties showed higher δ18O values than late varieties, while the isotopic enrichment was lower for this isotopic ratio in irrigated vines.

Conclusions:

Differences in the narrow margin in which δ13C values of the grapes are maintained throughout their development seemed to respond more to the crop management practice than to the variety. However, the notable changes in δ18O values seem to be due to a complex mechanism that involves the discharge of water in the grapes from the phloem at beginning of ripening and the loss of water due to transpiration through the skin.

Significance and Impact of the Study: In the search for the genotypes with the highest water efficiency that effectively respond to the proliferation and dilation of drought periods that are expected in many regions, it is urgent to explore the existing genetic variability. In this sense, δ13C and δ18O could be useful tools to take into account in any research related to water use by cultivars at physiological or agronomic levels.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Adelaida Mena Morales*, Juan Luis Chacón Vozmediano, Rosa Mª Sánchez-Gil Jimeno, Jesús Martínez Gascueña

Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain

Contact the author

Keywords

Grapevine, genotypes, musts, δ13C dynamics, δ18O dynamics, IRMS

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters.

The challenge of improving oenological quality in favorable conditions for productivity

Marselan (Cabernet-Sauvignon x Grenache), has been planted for more than 20 years now in Uruguay. Due to its good agronomic and oenological aptitudes under uruguayan conditions, it is currently the red variety with highest plantation rate. The objective of the study was to identify management practices, aimed at improving quality in highly productive vineyards, different fruit/leaf regulation methods were tested in southern Uruguay.

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Reduced fungicide sprayings: A biodiversity boost?

Pesticides are considered one of the main causes for arthropod decline in agriculture which in turn may affect ecosystem services such as natural pest control and soil fertility.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.