Terroir 2020 banner
IVES 9 IVES Conference Series 9 The dynamics of δ13C and δ18O in musts during berries development

The dynamics of δ13C and δ18O in musts during berries development

Abstract

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Methods and Results: The present work was carried out in 2019 with a set of seven varieties selected to monitor the aforementioned ratios in musts obtained during berries development: three of them red (Bobal, Tinto Velasco and Syrah), managed with irrigation, and the other three white (Airén, Malvar and Albillo Real) kept without irrigation; the seventh, Tempranillo, was managed with or without irrigation. 

Monitoring the dynamics of isotope ratios was undertaken through sampling of grapes carried out periodically, from shortly before closing cluster to maturity. In obtained musts, δ13C and δ18O were determined by mass spectrometry of isotope ratios.

The small changes observed between samples in δ13C in a specific variety did not seem to follow any pattern. In most cases, the comparisons of means performed showed no significant differences between samples. However, differences were observed between the two management systems: irrigated and rainfed; in dry conditions, with the stomatal closure, 13C isotopic discrimination declined during photosynthesis, and the ratio then increased.

This was not so with δ18O, where the comparisons of means always showed significant differences between samples. Dynamics of δ18O seemed to adapt, in this case, to a double curve pattern (cubic polynomial): the intense increase in the ratio of the first stages of fruit development was followed by a phase of slight decline, which lasted up to 15 or 20 days before harvest, at which point the ratio increased again. There were both inter-varietal and between management system differences: musts in early harvest varieties showed higher δ18O values than late varieties, while the isotopic enrichment was lower for this isotopic ratio in irrigated vines.

Conclusions:

Differences in the narrow margin in which δ13C values of the grapes are maintained throughout their development seemed to respond more to the crop management practice than to the variety. However, the notable changes in δ18O values seem to be due to a complex mechanism that involves the discharge of water in the grapes from the phloem at beginning of ripening and the loss of water due to transpiration through the skin.

Significance and Impact of the Study: In the search for the genotypes with the highest water efficiency that effectively respond to the proliferation and dilation of drought periods that are expected in many regions, it is urgent to explore the existing genetic variability. In this sense, δ13C and δ18O could be useful tools to take into account in any research related to water use by cultivars at physiological or agronomic levels.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Adelaida Mena Morales*, Juan Luis Chacón Vozmediano, Rosa Mª Sánchez-Gil Jimeno, Jesús Martínez Gascueña

Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain

Contact the author

Keywords

Grapevine, genotypes, musts, δ13C dynamics, δ18O dynamics, IRMS

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.