Terroir 2020 banner
IVES 9 IVES Conference Series 9 The dynamics of δ13C and δ18O in musts during berries development

The dynamics of δ13C and δ18O in musts during berries development

Abstract

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Methods and Results: The present work was carried out in 2019 with a set of seven varieties selected to monitor the aforementioned ratios in musts obtained during berries development: three of them red (Bobal, Tinto Velasco and Syrah), managed with irrigation, and the other three white (Airén, Malvar and Albillo Real) kept without irrigation; the seventh, Tempranillo, was managed with or without irrigation. 

Monitoring the dynamics of isotope ratios was undertaken through sampling of grapes carried out periodically, from shortly before closing cluster to maturity. In obtained musts, δ13C and δ18O were determined by mass spectrometry of isotope ratios.

The small changes observed between samples in δ13C in a specific variety did not seem to follow any pattern. In most cases, the comparisons of means performed showed no significant differences between samples. However, differences were observed between the two management systems: irrigated and rainfed; in dry conditions, with the stomatal closure, 13C isotopic discrimination declined during photosynthesis, and the ratio then increased.

This was not so with δ18O, where the comparisons of means always showed significant differences between samples. Dynamics of δ18O seemed to adapt, in this case, to a double curve pattern (cubic polynomial): the intense increase in the ratio of the first stages of fruit development was followed by a phase of slight decline, which lasted up to 15 or 20 days before harvest, at which point the ratio increased again. There were both inter-varietal and between management system differences: musts in early harvest varieties showed higher δ18O values than late varieties, while the isotopic enrichment was lower for this isotopic ratio in irrigated vines.

Conclusions:

Differences in the narrow margin in which δ13C values of the grapes are maintained throughout their development seemed to respond more to the crop management practice than to the variety. However, the notable changes in δ18O values seem to be due to a complex mechanism that involves the discharge of water in the grapes from the phloem at beginning of ripening and the loss of water due to transpiration through the skin.

Significance and Impact of the Study: In the search for the genotypes with the highest water efficiency that effectively respond to the proliferation and dilation of drought periods that are expected in many regions, it is urgent to explore the existing genetic variability. In this sense, δ13C and δ18O could be useful tools to take into account in any research related to water use by cultivars at physiological or agronomic levels.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Adelaida Mena Morales*, Juan Luis Chacón Vozmediano, Rosa Mª Sánchez-Gil Jimeno, Jesús Martínez Gascueña

Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain

Contact the author

Keywords

Grapevine, genotypes, musts, δ13C dynamics, δ18O dynamics, IRMS

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

Georgian vitis germplasm: conservation, research and usage

Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards.

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.