Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Abstract

OENO One special issue

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management. These remote sensing techniques are mainly exploited to get the Normalized Difference Vegetation Index (NDVI), which is useful for describing the morpho-vegetational characteristics of vineyards. This study was conducted in a vineyard in Tuscany (Italy) during the 2017, 2018 and 2019 seasons. Ground data were acquired to detect some agronomic variables such as yield (kg/vine), total soluble solids (TSS), and pruning weight (kg/vine). Remote sensed multispectral images acquired by UAV and Sentinel-2 (S2) satellite platform were used to assess the analysis of the vegetative variability. The UAV NDVI was extracted using both a mixed pixels approach (both vine and inter-row) and from pure canopy pixels. In addition to these UAV layers, the vine thickness was extracted. The aim of this study was to evaluate both classical Ordinary Least Square (OLS) and spatial statistical methods (Moran Index-MI and BILISA) to assess their performance in a multi-temporal comparison between satellite and ground data with UAV information. Good correlations were detected between S2 NDVI and UAV NDVI mixed pixels through both methods (R2 = 0.80 and MI = 0.75). Regarding ground data, UAV layers showed low and negative association with TSS (MI = – 0.34 was the lowest value) whereas better spatial autocorrelations with positive values were detected between UAV layers and both yield (MI ranged from 0.42 to 0.52) and pruning weight (MI ranged from 0.45 to 0.64). The spatial analysis made by MI and BILISA methodologies added more information to this study, clearly showing that both UAV and Sentinel-2 satellite allowed the vigour spatial variability within the vineyard to be detected correctly, overcoming the classical comparison methods by adding the spatial effect. MI and BILISA play a key role in identifying spatial patterns and could be successfully exploited by agricultural stakeholders.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Laura Pastonchi, Salvatore Filippo Di Gennaro*, Piero Toscano and Alessandro Matese

Institute of BioEconomy, National Research Council (CNR-IBE), Via G. Caproni, 8, 50145 6 Florence, Italy

Contact the author

Keywords

Unmanned Aerial Vehicle (UAV), Sentinel-2 data precision viticulture, Moran’s index (MI), Local indicators of spatial autocorrelation (LISA), vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

La viticoltura veneta in un contesto di città e industria diffusa: per una lettura integrale del paesaggio della collina pedemontana veronese orientale

l Veneto, come è noto, rappresenta una delle estensioni di superfici a vigneto più importanti in Italia e nell’Europa stessa. Il paesaggio viticolo fino ad oggi è stato ampiamente letto nelle sue componenti

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Effect of irrigation and soil type on root growth and distribution of Vitis vinifera L. cv. Nero d’Avola grown in Sicily

L’essai a été effectué dans un vignoble du cépage Nero d’Avola greffé sur 1103 Paulsen dans un terroir de la D.O.C Alcamo en Sicile. Le système de conduite des vignes était à espalier, la taille à cordon coursonné et l’irrigation à goutte a goutte. On a été confrontés trois types de traitements: A) vignes non irriguées; B) vignes irriguées quand le

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.