Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Abstract

OENO One special issue

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management. These remote sensing techniques are mainly exploited to get the Normalized Difference Vegetation Index (NDVI), which is useful for describing the morpho-vegetational characteristics of vineyards. This study was conducted in a vineyard in Tuscany (Italy) during the 2017, 2018 and 2019 seasons. Ground data were acquired to detect some agronomic variables such as yield (kg/vine), total soluble solids (TSS), and pruning weight (kg/vine). Remote sensed multispectral images acquired by UAV and Sentinel-2 (S2) satellite platform were used to assess the analysis of the vegetative variability. The UAV NDVI was extracted using both a mixed pixels approach (both vine and inter-row) and from pure canopy pixels. In addition to these UAV layers, the vine thickness was extracted. The aim of this study was to evaluate both classical Ordinary Least Square (OLS) and spatial statistical methods (Moran Index-MI and BILISA) to assess their performance in a multi-temporal comparison between satellite and ground data with UAV information. Good correlations were detected between S2 NDVI and UAV NDVI mixed pixels through both methods (R2 = 0.80 and MI = 0.75). Regarding ground data, UAV layers showed low and negative association with TSS (MI = – 0.34 was the lowest value) whereas better spatial autocorrelations with positive values were detected between UAV layers and both yield (MI ranged from 0.42 to 0.52) and pruning weight (MI ranged from 0.45 to 0.64). The spatial analysis made by MI and BILISA methodologies added more information to this study, clearly showing that both UAV and Sentinel-2 satellite allowed the vigour spatial variability within the vineyard to be detected correctly, overcoming the classical comparison methods by adding the spatial effect. MI and BILISA play a key role in identifying spatial patterns and could be successfully exploited by agricultural stakeholders.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Laura Pastonchi, Salvatore Filippo Di Gennaro*, Piero Toscano and Alessandro Matese

Institute of BioEconomy, National Research Council (CNR-IBE), Via G. Caproni, 8, 50145 6 Florence, Italy

Contact the author

Keywords

Unmanned Aerial Vehicle (UAV), Sentinel-2 data precision viticulture, Moran’s index (MI), Local indicators of spatial autocorrelation (LISA), vineyard variability

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Bio-based fertilisers from fruit and vegetable residues for improving soil fertility and vine status in degraded vineyards

The H2020 RUSTICA project aims to propose, demonstrate, and implement technical solutions to convert organic residues from fruit and vegetables into high-quality novel bio-based fertilisers (BBF).

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Actual challenges and the need to produce alternative products from red grapes rich in phenols and antioxidants

The global consumption of wine has undergone significant changes after several years of covid-19, which was the beginning of a global crisis of the current century. This pushed some people to start looking for comfort and security as they felt that the world around them was losing these benefits. In most cases, this has led to them to idea of rethinking their lives in an attempt to live better or continuing to stay true to their habits and lifestyles despite the pressure of changes. Alcohol in any form is a part of these reactions, leading to increased consumption in the early stages of a crisis, particularly in relation to anxiety.

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.