Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Abstract

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi.

Methods and Results: The studies presented here were conducted in a field trial comparing integrated, organic and biodynamic viticulture at least 10 years after the implementation of the different management systems. The vineyard is located in Geisenheim, Germany, and the study is conducted on Vitis vinifera L. cv. Riesling.

One study assessed soil enzymatic activities (GLU, CAT, UR, DHA, PHO) and microbial biomass by quantifying PLFAs and NLFAs, respectively. For the second study soil fungal and bacterial biodiversity were investigated using an amplicon sequencing approach. For the third study eDNA was extracted from arthropods in bulk and soil samples. A DNA metabarcoding approach was used to investigate whether diversity of arthropods and fungi in these samples was affected by the management system.

Fungal and bacterial biomass as well as enzymatic activities in the soil were shown to be highly affected by the management system. The organic and the biodynamic systems had significantly more fungal and bacterial biomass. In contrast, the integrated system had a significantly higher mycorrhizal biomass compared to the organic and the biodynamic system. Enzymatic activities measured were significantly higher under organic and biodynamic management.

Fungal species richness assessed by DNA sequencing did not differ among management systems, but fungal community composition was significantly affected. Bacterial species richness was significantly higher under organic and biodynamic management, whereas bacterial community composition was less affected by the management system.

Richness of flying and soil-living arthropods and their related fungi assessed by eDNA sequencing was not significantly affected by the management system alone. In contrast, management systems significantly differed in the arthropod community composition in bulk samples as well as in fungal community composition associated with flying as well as soil-living arthropods.

Conclusions:

Different management systems have a clear impact on soil microbial activity, biomass, and biodiversity, as well as on arthropod biodiversity and fungal biodiversity associated with arthropods. In the current studies soil enzymatic activities as well as soil microbial biomass and bacterial species richness in the soil were positively affected by organic and biodynamic management. Fungal community composition in the soil, in samples of soil-living as well as in samples of flying arthropods were highly affected by the management system. The hypothesis of whether arthropods in the vineyard act as vectors for bacteria and fungi will be discussed.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Johanna Döring1*, Matthias Friedel1, Jacob Agerbo Rasmussen3,4,5, Maximilian Hendgen2, Sofia Di Giacinto2, Randolf Kauer1

1Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
2Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
3Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
4Biological Institute, Genome Research and Molecular Biomedicine, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark 
5Center for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade  5A,  1352 Copenhagen, Denmark

Contact the author

Keywords

Organic, biodynamic, soil microbial activity, soil microbial biomass, microbial biodiversity, arthropod biodiversity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]