Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Abstract

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi.

Methods and Results: The studies presented here were conducted in a field trial comparing integrated, organic and biodynamic viticulture at least 10 years after the implementation of the different management systems. The vineyard is located in Geisenheim, Germany, and the study is conducted on Vitis vinifera L. cv. Riesling.

One study assessed soil enzymatic activities (GLU, CAT, UR, DHA, PHO) and microbial biomass by quantifying PLFAs and NLFAs, respectively. For the second study soil fungal and bacterial biodiversity were investigated using an amplicon sequencing approach. For the third study eDNA was extracted from arthropods in bulk and soil samples. A DNA metabarcoding approach was used to investigate whether diversity of arthropods and fungi in these samples was affected by the management system.

Fungal and bacterial biomass as well as enzymatic activities in the soil were shown to be highly affected by the management system. The organic and the biodynamic systems had significantly more fungal and bacterial biomass. In contrast, the integrated system had a significantly higher mycorrhizal biomass compared to the organic and the biodynamic system. Enzymatic activities measured were significantly higher under organic and biodynamic management.

Fungal species richness assessed by DNA sequencing did not differ among management systems, but fungal community composition was significantly affected. Bacterial species richness was significantly higher under organic and biodynamic management, whereas bacterial community composition was less affected by the management system.

Richness of flying and soil-living arthropods and their related fungi assessed by eDNA sequencing was not significantly affected by the management system alone. In contrast, management systems significantly differed in the arthropod community composition in bulk samples as well as in fungal community composition associated with flying as well as soil-living arthropods.

Conclusions:

Different management systems have a clear impact on soil microbial activity, biomass, and biodiversity, as well as on arthropod biodiversity and fungal biodiversity associated with arthropods. In the current studies soil enzymatic activities as well as soil microbial biomass and bacterial species richness in the soil were positively affected by organic and biodynamic management. Fungal community composition in the soil, in samples of soil-living as well as in samples of flying arthropods were highly affected by the management system. The hypothesis of whether arthropods in the vineyard act as vectors for bacteria and fungi will be discussed.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Johanna Döring1*, Matthias Friedel1, Jacob Agerbo Rasmussen3,4,5, Maximilian Hendgen2, Sofia Di Giacinto2, Randolf Kauer1

1Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
2Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
3Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
4Biological Institute, Genome Research and Molecular Biomedicine, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark 
5Center for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade  5A,  1352 Copenhagen, Denmark

Contact the author

Keywords

Organic, biodynamic, soil microbial activity, soil microbial biomass, microbial biodiversity, arthropod biodiversity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Can the use of rootstocks enhance terroir?

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse.

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.

The influence of climate on the grapevine phenology and content of sugar and total acids in the must

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.