Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Abstract

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi.

Methods and Results: The studies presented here were conducted in a field trial comparing integrated, organic and biodynamic viticulture at least 10 years after the implementation of the different management systems. The vineyard is located in Geisenheim, Germany, and the study is conducted on Vitis vinifera L. cv. Riesling.

One study assessed soil enzymatic activities (GLU, CAT, UR, DHA, PHO) and microbial biomass by quantifying PLFAs and NLFAs, respectively. For the second study soil fungal and bacterial biodiversity were investigated using an amplicon sequencing approach. For the third study eDNA was extracted from arthropods in bulk and soil samples. A DNA metabarcoding approach was used to investigate whether diversity of arthropods and fungi in these samples was affected by the management system.

Fungal and bacterial biomass as well as enzymatic activities in the soil were shown to be highly affected by the management system. The organic and the biodynamic systems had significantly more fungal and bacterial biomass. In contrast, the integrated system had a significantly higher mycorrhizal biomass compared to the organic and the biodynamic system. Enzymatic activities measured were significantly higher under organic and biodynamic management.

Fungal species richness assessed by DNA sequencing did not differ among management systems, but fungal community composition was significantly affected. Bacterial species richness was significantly higher under organic and biodynamic management, whereas bacterial community composition was less affected by the management system.

Richness of flying and soil-living arthropods and their related fungi assessed by eDNA sequencing was not significantly affected by the management system alone. In contrast, management systems significantly differed in the arthropod community composition in bulk samples as well as in fungal community composition associated with flying as well as soil-living arthropods.

Conclusions:

Different management systems have a clear impact on soil microbial activity, biomass, and biodiversity, as well as on arthropod biodiversity and fungal biodiversity associated with arthropods. In the current studies soil enzymatic activities as well as soil microbial biomass and bacterial species richness in the soil were positively affected by organic and biodynamic management. Fungal community composition in the soil, in samples of soil-living as well as in samples of flying arthropods were highly affected by the management system. The hypothesis of whether arthropods in the vineyard act as vectors for bacteria and fungi will be discussed.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Johanna Döring1*, Matthias Friedel1, Jacob Agerbo Rasmussen3,4,5, Maximilian Hendgen2, Sofia Di Giacinto2, Randolf Kauer1

1Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
2Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
3Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
4Biological Institute, Genome Research and Molecular Biomedicine, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark 
5Center for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade  5A,  1352 Copenhagen, Denmark

Contact the author

Keywords

Organic, biodynamic, soil microbial activity, soil microbial biomass, microbial biodiversity, arthropod biodiversity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Characterization and biological effects of extracts from winery by-products

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process.

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.