Terroir 2020 banner
IVES 9 IVES Conference Series 9 Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Abstract

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas. Therefore, it is necessary to search for genotypes with greater water use efficiency (WUE not only among varieties but also, between clones of the same variety). 

Methods and Results: In this work, 23 clones of cv. Tempranillo were evaluated during five consecutive years in two experiments. First, a three-year field experiment determining the variability in WUE by measuring gas exchange parameters. Second, a two-year experiment in pots, analyzing the response of those Tempranillo clones to different degrees of soil water availability. Different growth parameters, leaf gas exchange rates, and biomass production were measured. Field data of leaf exchange rates and derived parameters showed a wide variability among clones in WUE up to 80% to that previously achieved comparing different cultivars.  These differences appear to be due to differences in photosynthesis capacity rather than to a more efficient control of water loss. Pot experiments reveal differences among clones in biomass production and gas exchange parameters as indicators of plant water use efficiency. A joint analysis of pot and field data showed a consistency in higher and lower WUE genotypes, although significant environmental condition effects were present. 

Conclusions: 

The whole analysis of WUE indicators quantified the degree of variability in WUE among clones, and identified the best and worst water use efficient clones in both well-watered and water deficit conditions.

Significance and Impact of the Study: These findings open new ways for future research focused on the physiological basis of the variations in WUE, and can also be extended to other reputed drought-tolerant cultivars.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ignacio Tortosa1, José M. Escalona1,2*, Hipólito Medrano1,2

1Biology Department, University of Balearic Island, Ctra Valldemossa km 7,5. 07122 Palma, Spain
2Agro-environmental and water economy Research Institute (INAGEA) Ctra Valldemossa km 7,5, 07122 Palma, Spain

Contact the author

Keywords

Vitis vinifera, clones, Tempranillo, drought, water use efficiency

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds

A terroir represents grouping of homogenous environmental units, or natural terroir units, based on the typicality of the products obtained. Identification and characterisation of terroirs depends on knowledge of environmental parameters, the functioning of the grapevine and characteristics of the final product, which must be placed in a spatial context.

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.

The Pampa and the vineyard: gaucho´s natural and symbolic aspects in the identity´s constitution of “Vinhos da Campanha”’s terroir – RS/Brasil

The wine region of “Vinhos da Campanha” is located in southern Brazil, on the Uruguay borderline. The colonization’s process in the region was characterized by territorial disputes between Portuguese

Potential use of the yeast Starmerella bacillaris as a sustainable biocontrol agent against gray mold disease in viticulture

Pest biocontrol strategies are gaining attention as eco-friendly alternatives to the use of synthetic pesticides, including in viticulture.