Terroir 2020 banner
IVES 9 IVES Conference Series 9 Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Abstract

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas. Therefore, it is necessary to search for genotypes with greater water use efficiency (WUE not only among varieties but also, between clones of the same variety). 

Methods and Results: In this work, 23 clones of cv. Tempranillo were evaluated during five consecutive years in two experiments. First, a three-year field experiment determining the variability in WUE by measuring gas exchange parameters. Second, a two-year experiment in pots, analyzing the response of those Tempranillo clones to different degrees of soil water availability. Different growth parameters, leaf gas exchange rates, and biomass production were measured. Field data of leaf exchange rates and derived parameters showed a wide variability among clones in WUE up to 80% to that previously achieved comparing different cultivars.  These differences appear to be due to differences in photosynthesis capacity rather than to a more efficient control of water loss. Pot experiments reveal differences among clones in biomass production and gas exchange parameters as indicators of plant water use efficiency. A joint analysis of pot and field data showed a consistency in higher and lower WUE genotypes, although significant environmental condition effects were present. 

Conclusions: 

The whole analysis of WUE indicators quantified the degree of variability in WUE among clones, and identified the best and worst water use efficient clones in both well-watered and water deficit conditions.

Significance and Impact of the Study: These findings open new ways for future research focused on the physiological basis of the variations in WUE, and can also be extended to other reputed drought-tolerant cultivars.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ignacio Tortosa1, José M. Escalona1,2*, Hipólito Medrano1,2

1Biology Department, University of Balearic Island, Ctra Valldemossa km 7,5. 07122 Palma, Spain
2Agro-environmental and water economy Research Institute (INAGEA) Ctra Valldemossa km 7,5, 07122 Palma, Spain

Contact the author

Keywords

Vitis vinifera, clones, Tempranillo, drought, water use efficiency

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).