Terroir 2020 banner
IVES 9 IVES Conference Series 9 Developing and assessing different cordon establishment techniques for long-term vineyard management

Developing and assessing different cordon establishment techniques for long-term vineyard management

Abstract

Aim: The aim of this research is to quantify the impacts of different cordon establishment techniques on vine health and longevity. It is hypothesised that wrapping developing cordon arms tightly around the cordon wire will cause a constriction of the vascular system, becoming worse over time and disrupting the flow of water and nutrients.

Methods and Results: Training methods including wrapping the cordon tightly around the cordon wire, securing the cordon on top of the wire, and weaving the cordon through a plastic clip system, among others were applied to Cabernet Sauvignon and Shiraz grapevines at two commercial growing sites. At one site a length adjustment was performed on canes selected as permanent cordon arms based on their apparent vigour. Areas of assessment include measurements of vegetative growth, canopy architecture, and yield components, as well as physiological measurements including non-structural carbohydrate status and the microscopic examination of xylem morphology. Susceptibility to fungal trunk diseases is also being investigated. Early results indicate a significantly lower concentration of sugar, starch, and total non-structural carbohydrates in cane samples collected from the distal portion of arms woven through the plastic clip system after one growing season. Additionally, measurements of circumference and pruning weight of the intermediate sections of the cordons were significantly greater in vines which received length adjustments than those that didn’t receive adjustments.

Conclusions: 

Measurements of non-structural carbohydrate status suggest that the use of the plastic clip system may be beneficial in promoting the translocation of carbohydrates from the distal portion of the arm to perennial structures for overwintering. The increase in vegetative growth observed in the vines which received length adjustments suggests that this method may be beneficial in encouraging the growth of more numerous, healthy spur positions.

Significance and Impact of the Study: Suitable vineyard management strategies are needed to minimise the occurrence of cordon decline and dead arm symptoms. Understanding the potential benefits of adopting cordon establishment techniques which avoid constriction of the vines’ vasculature will provide vineyard managers with a strategy aimed at improving vineyard health and longevity.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Patrick O’Brien1, Roberta De Bei1, Cassandra Collins1,2*

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia

Contact the author

Keywords

Cordon, constriction, vascular system, trunk disease, decline

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Southern Oregon Ava landscape and climate for wine production

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States.