Terroir 2020 banner
IVES 9 IVES Conference Series 9 Developing and assessing different cordon establishment techniques for long-term vineyard management

Developing and assessing different cordon establishment techniques for long-term vineyard management

Abstract

Aim: The aim of this research is to quantify the impacts of different cordon establishment techniques on vine health and longevity. It is hypothesised that wrapping developing cordon arms tightly around the cordon wire will cause a constriction of the vascular system, becoming worse over time and disrupting the flow of water and nutrients.

Methods and Results: Training methods including wrapping the cordon tightly around the cordon wire, securing the cordon on top of the wire, and weaving the cordon through a plastic clip system, among others were applied to Cabernet Sauvignon and Shiraz grapevines at two commercial growing sites. At one site a length adjustment was performed on canes selected as permanent cordon arms based on their apparent vigour. Areas of assessment include measurements of vegetative growth, canopy architecture, and yield components, as well as physiological measurements including non-structural carbohydrate status and the microscopic examination of xylem morphology. Susceptibility to fungal trunk diseases is also being investigated. Early results indicate a significantly lower concentration of sugar, starch, and total non-structural carbohydrates in cane samples collected from the distal portion of arms woven through the plastic clip system after one growing season. Additionally, measurements of circumference and pruning weight of the intermediate sections of the cordons were significantly greater in vines which received length adjustments than those that didn’t receive adjustments.

Conclusions: 

Measurements of non-structural carbohydrate status suggest that the use of the plastic clip system may be beneficial in promoting the translocation of carbohydrates from the distal portion of the arm to perennial structures for overwintering. The increase in vegetative growth observed in the vines which received length adjustments suggests that this method may be beneficial in encouraging the growth of more numerous, healthy spur positions.

Significance and Impact of the Study: Suitable vineyard management strategies are needed to minimise the occurrence of cordon decline and dead arm symptoms. Understanding the potential benefits of adopting cordon establishment techniques which avoid constriction of the vines’ vasculature will provide vineyard managers with a strategy aimed at improving vineyard health and longevity.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Patrick O’Brien1, Roberta De Bei1, Cassandra Collins1,2*

1The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia, Australia

Contact the author

Keywords

Cordon, constriction, vascular system, trunk disease, decline

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.