Terroir 2020 banner
IVES 9 IVES Conference Series 9 Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Abstract

OENO One – Special issue

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit to develop under temperature conditions similar to those typically associated with that wine style. We demonstrate that Grapevine Flowering Véraison (GFV) and the Grapevine Sugar Ripeness (GSR) models can be implemented as a means of testing the suitability of alternative cultivars as an adaptation strategy to climate change.

Previous viticulture temperature-based models were reviewed and compared with the GFV and GSR models. The results from the original GFV and GSR models were combined to evaluate the classification of the 20 most represented cultivars. The GFV and GSR models were tested for three new historic and contrasting datasets: 31 cultivars in the VitAdapt collection, Bordeaux; Chardonnay, Champagne; and Sauvignon blanc, Marlborough. Errors of predictions were less than a week for flowering and véraison, and within 7-10 days for the time to reach relevant target sugar concentrations for these datasets. Future GFV and GSR projections for Chardonnay resulted in an advance at a rate of one to two days per decade for flowering and véraison, and two to five days per decade for time to 170 g/L sugar concentration for RCP 4.5 and 8.5 respectively.

Therefore, the GFV and GSR models are highly accurate and easy-to-use temperature-based phenological models for predicting flowering, véraison and time to target sugar concentrations when tested under new conditions. The models can be applied for characterising new cultivars, and assessing thermal time to flowering, véraison and different sugar targets. They can be used to assess cultivar performance in winegrowing areas worldwide under current or future climate conditions. The classifications therefore enable growers and researchers to compare the phenology of cultivars in a region today and to consider adaptation options: selecting later ripening cultivars or choosing alternative sites in the context of climate change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Amber K. Parker1 , Iñaki García de Cortázar-Atauri2 , Michael C.T. Trought1, 3, Agnès Destrac4 , Rob Agnew3 , Andrew Sturman5 and Cornelis van Leeuwen4

1 Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
2 INRAE, US 1116 AGROCLIM, F-84914 Avignon, France
3 The New Zealand Institute for Plant & Food Research Ltd, Marlborough Research Centre, PO Box 845, Blenheim 7240, New Zealand
4 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Chemin de Leysotte, 33883, Villenave d’Ornon, France
5 School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

Contact the author

Keywords

Grapevine, phenology, flowering, véraison, sugar, temperature, model, climate change, adaptation, classification

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.

Volatile composition of base wines to obtain sparkling wines from seven autochthonous grape varieties from Castilla y León (Spain)

The aim of this work was to characterize the aromatic profile of white and rosé base wines for the elaboration of sparkling wines from seven autochthonous grape varieties of Castilla y León. The ‘Albarín’, ‘Godello’ and ‘Verdejo’ white grape cultivars contribute with more fruity notes than the ‘Viura’ and ‘Malvasía’ cultivars; and ‘Prieto picudo’ coloured grape cultivar has more fruity character than ‘Garnacha’.

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.

Mapping aromatic profiles of Chardonnay and Sangiovese wines in grafting combination with new rootstocks

Rootstocks play a key role in the adaptation of grapevine to environmental conditions, affecting phenology, vigour, yield and grape quality.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.