Terroir 2020 banner
IVES 9 IVES Conference Series 9 Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Abstract

OENO One – Special issue

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit to develop under temperature conditions similar to those typically associated with that wine style. We demonstrate that Grapevine Flowering Véraison (GFV) and the Grapevine Sugar Ripeness (GSR) models can be implemented as a means of testing the suitability of alternative cultivars as an adaptation strategy to climate change.

Previous viticulture temperature-based models were reviewed and compared with the GFV and GSR models. The results from the original GFV and GSR models were combined to evaluate the classification of the 20 most represented cultivars. The GFV and GSR models were tested for three new historic and contrasting datasets: 31 cultivars in the VitAdapt collection, Bordeaux; Chardonnay, Champagne; and Sauvignon blanc, Marlborough. Errors of predictions were less than a week for flowering and véraison, and within 7-10 days for the time to reach relevant target sugar concentrations for these datasets. Future GFV and GSR projections for Chardonnay resulted in an advance at a rate of one to two days per decade for flowering and véraison, and two to five days per decade for time to 170 g/L sugar concentration for RCP 4.5 and 8.5 respectively.

Therefore, the GFV and GSR models are highly accurate and easy-to-use temperature-based phenological models for predicting flowering, véraison and time to target sugar concentrations when tested under new conditions. The models can be applied for characterising new cultivars, and assessing thermal time to flowering, véraison and different sugar targets. They can be used to assess cultivar performance in winegrowing areas worldwide under current or future climate conditions. The classifications therefore enable growers and researchers to compare the phenology of cultivars in a region today and to consider adaptation options: selecting later ripening cultivars or choosing alternative sites in the context of climate change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Amber K. Parker1 , Iñaki García de Cortázar-Atauri2 , Michael C.T. Trought1, 3, Agnès Destrac4 , Rob Agnew3 , Andrew Sturman5 and Cornelis van Leeuwen4

1 Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
2 INRAE, US 1116 AGROCLIM, F-84914 Avignon, France
3 The New Zealand Institute for Plant & Food Research Ltd, Marlborough Research Centre, PO Box 845, Blenheim 7240, New Zealand
4 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Chemin de Leysotte, 33883, Villenave d’Ornon, France
5 School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

Contact the author

Keywords

Grapevine, phenology, flowering, véraison, sugar, temperature, model, climate change, adaptation, classification

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Influence of plant growth regulators and water deficit on cv. Krissy table grape

Context and purpose of the study. The quality of table grape clusters significantly affects consumer perception and market value, with berry size, texture, color, and overall appearance playing key roles.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydospora, Phaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines.

Dialing in remote measurements of grapevine water stress by incorporating whole plant physiological responses

Context and purpose of the study. Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress.

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes