Terroir 2020 banner
IVES 9 IVES Conference Series 9 Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Abstract

OENO One – Special issue

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit to develop under temperature conditions similar to those typically associated with that wine style. We demonstrate that Grapevine Flowering Véraison (GFV) and the Grapevine Sugar Ripeness (GSR) models can be implemented as a means of testing the suitability of alternative cultivars as an adaptation strategy to climate change.

Previous viticulture temperature-based models were reviewed and compared with the GFV and GSR models. The results from the original GFV and GSR models were combined to evaluate the classification of the 20 most represented cultivars. The GFV and GSR models were tested for three new historic and contrasting datasets: 31 cultivars in the VitAdapt collection, Bordeaux; Chardonnay, Champagne; and Sauvignon blanc, Marlborough. Errors of predictions were less than a week for flowering and véraison, and within 7-10 days for the time to reach relevant target sugar concentrations for these datasets. Future GFV and GSR projections for Chardonnay resulted in an advance at a rate of one to two days per decade for flowering and véraison, and two to five days per decade for time to 170 g/L sugar concentration for RCP 4.5 and 8.5 respectively.

Therefore, the GFV and GSR models are highly accurate and easy-to-use temperature-based phenological models for predicting flowering, véraison and time to target sugar concentrations when tested under new conditions. The models can be applied for characterising new cultivars, and assessing thermal time to flowering, véraison and different sugar targets. They can be used to assess cultivar performance in winegrowing areas worldwide under current or future climate conditions. The classifications therefore enable growers and researchers to compare the phenology of cultivars in a region today and to consider adaptation options: selecting later ripening cultivars or choosing alternative sites in the context of climate change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Amber K. Parker1 , Iñaki García de Cortázar-Atauri2 , Michael C.T. Trought1, 3, Agnès Destrac4 , Rob Agnew3 , Andrew Sturman5 and Cornelis van Leeuwen4

1 Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
2 INRAE, US 1116 AGROCLIM, F-84914 Avignon, France
3 The New Zealand Institute for Plant & Food Research Ltd, Marlborough Research Centre, PO Box 845, Blenheim 7240, New Zealand
4 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Chemin de Leysotte, 33883, Villenave d’Ornon, France
5 School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

Contact the author

Keywords

Grapevine, phenology, flowering, véraison, sugar, temperature, model, climate change, adaptation, classification

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru.

Geochemistry of Vrbničko Polje (Croatia) winegrowing site

A multi-element pedo-geochemical survey was carried out in Vrbničko polje vineyards on the Krk Island, Croatia. This Mediterranean winegrowing site is famous by Žlahtina wine production.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.