Terroir 2020 banner
IVES 9 IVES Conference Series 9 Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Abstract

OENO One – Special issue

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit to develop under temperature conditions similar to those typically associated with that wine style. We demonstrate that Grapevine Flowering Véraison (GFV) and the Grapevine Sugar Ripeness (GSR) models can be implemented as a means of testing the suitability of alternative cultivars as an adaptation strategy to climate change.

Previous viticulture temperature-based models were reviewed and compared with the GFV and GSR models. The results from the original GFV and GSR models were combined to evaluate the classification of the 20 most represented cultivars. The GFV and GSR models were tested for three new historic and contrasting datasets: 31 cultivars in the VitAdapt collection, Bordeaux; Chardonnay, Champagne; and Sauvignon blanc, Marlborough. Errors of predictions were less than a week for flowering and véraison, and within 7-10 days for the time to reach relevant target sugar concentrations for these datasets. Future GFV and GSR projections for Chardonnay resulted in an advance at a rate of one to two days per decade for flowering and véraison, and two to five days per decade for time to 170 g/L sugar concentration for RCP 4.5 and 8.5 respectively.

Therefore, the GFV and GSR models are highly accurate and easy-to-use temperature-based phenological models for predicting flowering, véraison and time to target sugar concentrations when tested under new conditions. The models can be applied for characterising new cultivars, and assessing thermal time to flowering, véraison and different sugar targets. They can be used to assess cultivar performance in winegrowing areas worldwide under current or future climate conditions. The classifications therefore enable growers and researchers to compare the phenology of cultivars in a region today and to consider adaptation options: selecting later ripening cultivars or choosing alternative sites in the context of climate change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Amber K. Parker1 , Iñaki García de Cortázar-Atauri2 , Michael C.T. Trought1, 3, Agnès Destrac4 , Rob Agnew3 , Andrew Sturman5 and Cornelis van Leeuwen4

1 Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
2 INRAE, US 1116 AGROCLIM, F-84914 Avignon, France
3 The New Zealand Institute for Plant & Food Research Ltd, Marlborough Research Centre, PO Box 845, Blenheim 7240, New Zealand
4 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Chemin de Leysotte, 33883, Villenave d’Ornon, France
5 School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

Contact the author

Keywords

Grapevine, phenology, flowering, véraison, sugar, temperature, model, climate change, adaptation, classification

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide.

Are Farm to fork strategy goals reasonable and achievable? State of the art of Península de Setubal’s winegrowers

The European Union’s “farm to fork” strategy sets out several objectives to be achieved by farmers, who, among others, relate to increasing biodiversity, protecting soils and reducing the use of pesticides. At a time when the amendments to the national plans of Sustainable Use of pesticides are being discussed, it is important to understand what the Setúbal Peninsula region status is.

Une méthode d’étude synthétique du paysage

a) wine, a qualitative and user-friendly product, favors a visual support, even for a scientific study because it refers to the image of the terroir, in particular by its visible landscape. b) the vineyard landscape, which is fairly open by definition, favors this type of approach. c) the framework of the Terroir Test conducted by the URVV (INRA – Angers) comprises 15 micro-plots of 100 strains, and requires at this scale precise surveys of the environment, hence systematic shots, of the center of the plot, over 360°, at 50 mm intervals, at 1.70 m from the ground and horizontally.

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.