Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Abstract

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps. However, this process is not free from possible collateral effects able to produce off-flavors, wine quality loss and human health problems. In warm viticulture regions such as the south of Spain, the risk of suffering a deviation during the malolactic fermentation process increases for the high must pH. This contributes to produce wines with high volatile acidity and biogenic amines. The work develops a method that comprises combining the use of two non-Saccharomyces yeast as an alternative to the traditional malolactic fermentation in specific difficult scenarios. In this method, malic acid is consumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilization aim before bottling, while Lachancea thermotolerans produces lactic acid in order not to reduce and even increase the acidity of wines produced from low acidity musts. This technique reduces the risks inherent to the malolactic fermentation process when performed in warm regions with high potential alcohol degree and pH. The result is more fruity wines that contain less acetic acid and biogenic amines. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Author

Santiago Benito

Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.