Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Abstract

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps. However, this process is not free from possible collateral effects able to produce off-flavors, wine quality loss and human health problems. In warm viticulture regions such as the south of Spain, the risk of suffering a deviation during the malolactic fermentation process increases for the high must pH. This contributes to produce wines with high volatile acidity and biogenic amines. The work develops a method that comprises combining the use of two non-Saccharomyces yeast as an alternative to the traditional malolactic fermentation in specific difficult scenarios. In this method, malic acid is consumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilization aim before bottling, while Lachancea thermotolerans produces lactic acid in order not to reduce and even increase the acidity of wines produced from low acidity musts. This technique reduces the risks inherent to the malolactic fermentation process when performed in warm regions with high potential alcohol degree and pH. The result is more fruity wines that contain less acetic acid and biogenic amines. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Author

Santiago Benito

Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Macrowine 2021: available on IVES Conference Series

We were a partner of the 2021 Macrowine international congress. This event was held virtually last June. On IVES Conference Series portal, more than 280 abstracts written by wine scientists are available. They are available in Open Access and are divided into 6...

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.