Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Abstract

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps. However, this process is not free from possible collateral effects able to produce off-flavors, wine quality loss and human health problems. In warm viticulture regions such as the south of Spain, the risk of suffering a deviation during the malolactic fermentation process increases for the high must pH. This contributes to produce wines with high volatile acidity and biogenic amines. The work develops a method that comprises combining the use of two non-Saccharomyces yeast as an alternative to the traditional malolactic fermentation in specific difficult scenarios. In this method, malic acid is consumed by Schizosaccharomyces pombe, thus achieving the microbiological stabilization aim before bottling, while Lachancea thermotolerans produces lactic acid in order not to reduce and even increase the acidity of wines produced from low acidity musts. This technique reduces the risks inherent to the malolactic fermentation process when performed in warm regions with high potential alcohol degree and pH. The result is more fruity wines that contain less acetic acid and biogenic amines. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Author

Santiago Benito

Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Grape texture characteristics are linked to one major qtl

Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes.

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

Identification and quantification of c-glucosidic ellagitannins and their derivative in red wine aged in oak barrels

The C-glycosidic ellagitannins constitute a subclass of hydrolyzable tannins of remarkable structural diversity. In this work we first achieved the hemisynthesis of flavano-ellagitannins, then we used them to develop a new efficient detection and quantification procedure for the C-glycosidic ellagitannins as well as flavano-ellagitannins.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.