Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Use of ultrasounds to accelerate aging on lees of red wines

Use of ultrasounds to accelerate aging on lees of red wines

Abstract

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions. The main drawback is that the yeast autolysis developed during AOL is a slow process, taking at least one year to produce the degradation of cell structures and the significant release of yeast polysaccharides and other cell components to modify the sensory profile of wine. This process can be accelerated by using enzymes or thermal treatments and also using non-Saccharomyces yeasts. The use of ultrasounds (USs) is an alternative technology to break the yeast cells and to speed the autolysis process. US are high intensity sound waves that by cavitation, local heating produce the disruption of the cells and the extraction and release of proteins, polysaccharides, and other cell components. When USs are used directly in wines under AOL the thermal collateral effects produce undesired oxidations and affect wine quality even when the release of cell wall polysaccharides is accelerated. The application of USs to yeast biomasses exogenically produced help to overwhelm this inconvenience. Cell breakage and disaggregation is produced in a few minutes by using US and therefore facilitating a faster AOL process. US can be a useful technology to improve and accelerate the AOL of red wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Antonio MORATA1*, Juan Manuel del Fresno1, Iris Loira1, Rafael Cuerda2, Carmen González1, José Antonio Suárez Lepe1

1 enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
2 Comenge Cellars, Curiel de Duero, Valladolid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Metabolomics screening of Vitis sp. interspecific hybrids to select natural ingredients with cosmetic purposes

Introducing natural ingredients using green chemistry practices is a major challenge in cosmetics industry to follow the market trend. Among the plants of cosmetic interest, vine products show a remarkable diversity of natural substances with high potential for the cosmetic and dermatological sectors. To date, research focuses on well-known compounds like E-resveratrol and E-ε-viniferin,