Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Use of ultrasounds to accelerate aging on lees of red wines

Use of ultrasounds to accelerate aging on lees of red wines

Abstract

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions. The main drawback is that the yeast autolysis developed during AOL is a slow process, taking at least one year to produce the degradation of cell structures and the significant release of yeast polysaccharides and other cell components to modify the sensory profile of wine. This process can be accelerated by using enzymes or thermal treatments and also using non-Saccharomyces yeasts. The use of ultrasounds (USs) is an alternative technology to break the yeast cells and to speed the autolysis process. US are high intensity sound waves that by cavitation, local heating produce the disruption of the cells and the extraction and release of proteins, polysaccharides, and other cell components. When USs are used directly in wines under AOL the thermal collateral effects produce undesired oxidations and affect wine quality even when the release of cell wall polysaccharides is accelerated. The application of USs to yeast biomasses exogenically produced help to overwhelm this inconvenience. Cell breakage and disaggregation is produced in a few minutes by using US and therefore facilitating a faster AOL process. US can be a useful technology to improve and accelerate the AOL of red wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Antonio MORATA1*, Juan Manuel del Fresno1, Iris Loira1, Rafael Cuerda2, Carmen González1, José Antonio Suárez Lepe1

1 enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
2 Comenge Cellars, Curiel de Duero, Valladolid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Development of a novel UAV based approach for assessing the severity of spring frost and hail damages in vineyards

A solid feature of climate change is that the frequency and severity of weather extremes are increasing. Ranking European countries for the number of crop failures related to extreme events reports France on top followed by Italy and Spain (COM 2021).

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF.