Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Use of ultrasounds to accelerate aging on lees of red wines

Use of ultrasounds to accelerate aging on lees of red wines

Abstract

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions. The main drawback is that the yeast autolysis developed during AOL is a slow process, taking at least one year to produce the degradation of cell structures and the significant release of yeast polysaccharides and other cell components to modify the sensory profile of wine. This process can be accelerated by using enzymes or thermal treatments and also using non-Saccharomyces yeasts. The use of ultrasounds (USs) is an alternative technology to break the yeast cells and to speed the autolysis process. US are high intensity sound waves that by cavitation, local heating produce the disruption of the cells and the extraction and release of proteins, polysaccharides, and other cell components. When USs are used directly in wines under AOL the thermal collateral effects produce undesired oxidations and affect wine quality even when the release of cell wall polysaccharides is accelerated. The application of USs to yeast biomasses exogenically produced help to overwhelm this inconvenience. Cell breakage and disaggregation is produced in a few minutes by using US and therefore facilitating a faster AOL process. US can be a useful technology to improve and accelerate the AOL of red wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Antonio MORATA1*, Juan Manuel del Fresno1, Iris Loira1, Rafael Cuerda2, Carmen González1, José Antonio Suárez Lepe1

1 enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
2 Comenge Cellars, Curiel de Duero, Valladolid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Raman spectroscopy as a rapid method to assess grape polyphenolic maturation and wine malolactic fermentation on site

Wineries can increase their economic and environmental sustainability by optimizing the winemaking procedures, from harvest to wine maturation and conservation. Based on analytical data of the chemical composition and wine sensory evaluation, the enologist makes his own decision regarding the enological interventions at the harvest date selection, winemaking and post-winemaking.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

Starmerella bacillaris grape treatment as a sustainable approach to manage Botrytis cinerea during the withering process

Growing concerns over the environmental and health risks posed by chemical pesticides have highlighted the need to reduce their use in the agri-food sector.

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.