Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Use of ultrasounds to accelerate aging on lees of red wines

Use of ultrasounds to accelerate aging on lees of red wines

Abstract

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions. The main drawback is that the yeast autolysis developed during AOL is a slow process, taking at least one year to produce the degradation of cell structures and the significant release of yeast polysaccharides and other cell components to modify the sensory profile of wine. This process can be accelerated by using enzymes or thermal treatments and also using non-Saccharomyces yeasts. The use of ultrasounds (USs) is an alternative technology to break the yeast cells and to speed the autolysis process. US are high intensity sound waves that by cavitation, local heating produce the disruption of the cells and the extraction and release of proteins, polysaccharides, and other cell components. When USs are used directly in wines under AOL the thermal collateral effects produce undesired oxidations and affect wine quality even when the release of cell wall polysaccharides is accelerated. The application of USs to yeast biomasses exogenically produced help to overwhelm this inconvenience. Cell breakage and disaggregation is produced in a few minutes by using US and therefore facilitating a faster AOL process. US can be a useful technology to improve and accelerate the AOL of red wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Antonio MORATA1*, Juan Manuel del Fresno1, Iris Loira1, Rafael Cuerda2, Carmen González1, José Antonio Suárez Lepe1

1 enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
2 Comenge Cellars, Curiel de Duero, Valladolid, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence. Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied. This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.

Evaluation of new fem grapevine varieties resistant to the main fungal diseases

Context and purpose of the study. The genetic improvement of grapevines at the Edmund Mach Foundation (FEM) has evolved significantly since its inception, and its philosophy on sustainable viticulture through crossbreeding techniques aligns with the urgent need to reduce chemical use in agriculture.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).

May lactic acid bacteria play an important role in sparkling wine elaboration?

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned.