Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 All acids are equal, but some acids are more equal than others: (bio)acidification of wines

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Abstract

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our previous work delivered a superior LT starter capable of lowering wine pH by ~0.5 units when used in co-cultures with Saccharomyces cerevisiae (SC).  Here, we aimed to i) compare the profiles of the bio-acidified LT wines and the acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes (14.5 ° Bé; pH 3.9) were fermented with a sequential culture of LT and SC, and an SC monoculture control. The two obtained wines blended in three proportions (1:3, 1:1, 3:1), and the aliquots of the SC control (pH 4) were also acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.5).  Chemical analysis revealed major differences in a range of compositional parameters, which were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite the identical initial matrix, adjustment with lactic acid resulted in intenser ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to the adjustment with tartaric acid, driven by increases in ‘sourness’. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to fine-tune ‘freshness’ and differentiate wine styles.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ana Hranilovic 1, 2; Marina Bely 1; Isabelle Masneuf-Pomarede 1,3; Warren Albertin 1,4, Vladimir Jiranek 2, 5

1 ISVV, University of Bordeaux, Villenave d’Ornon, France
Department of Wine and Food Science, The University of Adelaide, Adelaide, Australia
Bordeaux Sciences Agro, Gradignan, France
ENSCBP, Bordeaux INP, Pessac, France
The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Methodological approach to zoning

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.