Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 All acids are equal, but some acids are more equal than others: (bio)acidification of wines

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Abstract

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our previous work delivered a superior LT starter capable of lowering wine pH by ~0.5 units when used in co-cultures with Saccharomyces cerevisiae (SC).  Here, we aimed to i) compare the profiles of the bio-acidified LT wines and the acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes (14.5 ° Bé; pH 3.9) were fermented with a sequential culture of LT and SC, and an SC monoculture control. The two obtained wines blended in three proportions (1:3, 1:1, 3:1), and the aliquots of the SC control (pH 4) were also acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.5).  Chemical analysis revealed major differences in a range of compositional parameters, which were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite the identical initial matrix, adjustment with lactic acid resulted in intenser ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to the adjustment with tartaric acid, driven by increases in ‘sourness’. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to fine-tune ‘freshness’ and differentiate wine styles.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ana Hranilovic 1, 2; Marina Bely 1; Isabelle Masneuf-Pomarede 1,3; Warren Albertin 1,4, Vladimir Jiranek 2, 5

1 ISVV, University of Bordeaux, Villenave d’Ornon, France
Department of Wine and Food Science, The University of Adelaide, Adelaide, Australia
Bordeaux Sciences Agro, Gradignan, France
ENSCBP, Bordeaux INP, Pessac, France
The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

«Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

Vine cultivar Mourvèdre is present all around the Mediterranean area and is interesting for its tannins and the specificity of its aromas.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).

Olfactometric and sensory study of red wines subjected to ultrasound or microwaves during their elaboration

The effect that some extraction techniques, such as ultrasound (Cacciola, Batllò, Ferraretto, Vincenzi, & Celotti, 2013; Povey & McClements, 1988) or microwaves (Carew, Close, & Dambergs, 2015; Carew, Gill, Close, & Dambergs, 2014) produce on the aroma of red wines, when applied to processes of extractive nature, such as pre-fermentative maceration or ageing with oak chips (Spanish oak – Quercus pyrenaica and French oak – Quercus robur) has been studied. The volatile profile was determined by means of gas chromatography coupled with olfactometric and mass spectrometric detection. A sensory analysis was also carried out. No indications were found to show that the pre-fermentative treatment with microwaves or ultrasound modified the sensory profile of the wines whereas the application of such energies during the ageing phase showed some positive trends at sensory level.