Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 All acids are equal, but some acids are more equal than others: (bio)acidification of wines

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Abstract

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our previous work delivered a superior LT starter capable of lowering wine pH by ~0.5 units when used in co-cultures with Saccharomyces cerevisiae (SC).  Here, we aimed to i) compare the profiles of the bio-acidified LT wines and the acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes (14.5 ° Bé; pH 3.9) were fermented with a sequential culture of LT and SC, and an SC monoculture control. The two obtained wines blended in three proportions (1:3, 1:1, 3:1), and the aliquots of the SC control (pH 4) were also acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.5).  Chemical analysis revealed major differences in a range of compositional parameters, which were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite the identical initial matrix, adjustment with lactic acid resulted in intenser ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to the adjustment with tartaric acid, driven by increases in ‘sourness’. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to fine-tune ‘freshness’ and differentiate wine styles.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ana Hranilovic 1, 2; Marina Bely 1; Isabelle Masneuf-Pomarede 1,3; Warren Albertin 1,4, Vladimir Jiranek 2, 5

1 ISVV, University of Bordeaux, Villenave d’Ornon, France
Department of Wine and Food Science, The University of Adelaide, Adelaide, Australia
Bordeaux Sciences Agro, Gradignan, France
ENSCBP, Bordeaux INP, Pessac, France
The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Assessment of the impact of actions in the vineyard and its surrounding environment on biodiversity in Rioja Alavesa (Spain)

Traditional viticulture areas have experienced in the last decades an intensification of field practices, linked to an increased use of fertilisers and phytosanitary products, and to a more intensive mechanization and uniformization of the landscape. This change in management has sometimes led to higher rates of soil erosion andloss of soil structure, fertility decline, groundwater contamination, and to an increased pressure of pests and diseases. Additionally, intensification usually leads to a simplification of landscapes, of particular concern in prestigious wine grape regions where the economical revenue encourages the conversion of land use from natural habitats to high value wine grape production. To revert this trend, it is necessary that growers implement actions that promote biodiversity in their vineyards. The aim of this study is to assess the impact of the implementation of cover crops, vegetational corridors, dry stone walls and vineyard biodiversity hotspots estimated through the study of arthropods. The work has been carried out in four vineyards in Rioja Alavesa belonging to Ostatu winery, where these infrastructures were implemented in 2020. The presence and diversity of arthropods was studied by capturing them at different times in the season and at different distances from the infrastructure using pit-fall traps in the soil and yellow, white and blue chromatic traps at the canopy level. This is a preliminary study in which all adult insects were sorted to the taxonomic level of order and Coleoptera were classified to morphospecies. The results obtained show that there is a relationship between the basic characteristics of the vineyard and the arthropods captured, with a positive effect, although also dependent on the vineyard, of the presence of infrastructure.

Port wine region settling

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine)

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.