Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 All acids are equal, but some acids are more equal than others: (bio)acidification of wines

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Abstract

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our previous work delivered a superior LT starter capable of lowering wine pH by ~0.5 units when used in co-cultures with Saccharomyces cerevisiae (SC).  Here, we aimed to i) compare the profiles of the bio-acidified LT wines and the acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes (14.5 ° Bé; pH 3.9) were fermented with a sequential culture of LT and SC, and an SC monoculture control. The two obtained wines blended in three proportions (1:3, 1:1, 3:1), and the aliquots of the SC control (pH 4) were also acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.5).  Chemical analysis revealed major differences in a range of compositional parameters, which were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite the identical initial matrix, adjustment with lactic acid resulted in intenser ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to the adjustment with tartaric acid, driven by increases in ‘sourness’. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to fine-tune ‘freshness’ and differentiate wine styles.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ana Hranilovic 1, 2; Marina Bely 1; Isabelle Masneuf-Pomarede 1,3; Warren Albertin 1,4, Vladimir Jiranek 2, 5

1 ISVV, University of Bordeaux, Villenave d’Ornon, France
Department of Wine and Food Science, The University of Adelaide, Adelaide, Australia
Bordeaux Sciences Agro, Gradignan, France
ENSCBP, Bordeaux INP, Pessac, France
The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).