Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 All acids are equal, but some acids are more equal than others: (bio)acidification of wines

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Abstract

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our previous work delivered a superior LT starter capable of lowering wine pH by ~0.5 units when used in co-cultures with Saccharomyces cerevisiae (SC).  Here, we aimed to i) compare the profiles of the bio-acidified LT wines and the acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes (14.5 ° Bé; pH 3.9) were fermented with a sequential culture of LT and SC, and an SC monoculture control. The two obtained wines blended in three proportions (1:3, 1:1, 3:1), and the aliquots of the SC control (pH 4) were also acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.5).  Chemical analysis revealed major differences in a range of compositional parameters, which were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite the identical initial matrix, adjustment with lactic acid resulted in intenser ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to the adjustment with tartaric acid, driven by increases in ‘sourness’. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to fine-tune ‘freshness’ and differentiate wine styles.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ana Hranilovic 1, 2; Marina Bely 1; Isabelle Masneuf-Pomarede 1,3; Warren Albertin 1,4, Vladimir Jiranek 2, 5

1 ISVV, University of Bordeaux, Villenave d’Ornon, France
Department of Wine and Food Science, The University of Adelaide, Adelaide, Australia
Bordeaux Sciences Agro, Gradignan, France
ENSCBP, Bordeaux INP, Pessac, France
The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las

Breeding grapevines for disease and low temperature tolerance: the U.S. perspective

Most grape scion cultivars grown around the world are derived from a single species, Vitis vinifera. Yet, the proportion of interspecific hybrids is increasing for a variety of reasons, including resistance to abiotic stresses such as low temperatures; societal, economic and environmental pressures to reduce pesticide usage; and to add a greater range of flavors to new table grape cultivars.

Aroma characterisation of mold resistant sparkling wines produced in a warm-temperate area

In recent years, resistant varieties have returned to the attention of the wine sector as a response to climate change and the reduction of pesticides in grapevine management, which is the main culprit of pesticide use in European agriculture. In this context, the production of sparkling wines could be strongly influenced due to its requirements for a particular balance between sugars and acidity, and the necessity of sound grapes to ensure wine quality. However, these parameters are not the only ones that define the suitability of a grape variety to produce sparkling wine.