Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

Abstract

The volatile composition of grapes (free and bound forms) contributes greatly to the varietal aroma and quality of wines. Several agronomical parameters affect grapes composition and wine quality: maturity level at harvest, water status, and the intensity of sun exposure. Of course vinification of non-healthy grapes can induce off-flavors in the wine. All these parameters are strongly linked with the climate (meso or micro), and its modification may induce strong modification of the grape composition. In this context, several studies were run these last years to study the origin of the dried fruit flavors (DF, prunes and dried figs) detected in must and young red wines. Indeed, these nuances are becoming more and more frequent in young wines, especially those made from Merlot grapes.

The aroma compound composition of Merlot (M) and Cabernet Sauvignon (CS) musts and wines was investigated to identify specific molecular markers responsible for DF. Organic extracts were prepared and analyzed by GC-O-MS. Furaneol (1), homofuraneol (2), γ -nonalactone (3), 3-methyl-2,4-nonanedione (4), (Z)-1,5-octadien-3-one (5), δ-decalactone (6), and massoia lactone (7) were detected at high concentrations (higher than their individual detection thresholds) in musts or wines marked by DF aromas. Certain molecular markers of DF aromas were specific to musts or wines. Reconstitution experiments revealed that a specific mixture of compounds (1-4) expressed these aromas in red wines. Additional experiments conducted with 180 wine consumers revealed how the level of these compounds might modify their willingness to pay (WP).

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Alexandre Pons

Unité de recherche Oenologie – EA 4577 – USC 1366 INRA – ISVV – Univ. de Bordeaux, Villenave-d’Ornon – France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).