Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Evolution of grape aromatic composition in cv. Ugni blanc

Evolution of grape aromatic composition in cv. Ugni blanc

Abstract

AIM: Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar, which is the main variety planted. According to the Cognac Appellation, harvest can occur between 13 & 21 °Brix. To date the harvest is assessed by vine growers only by sugar & acidity ripeness without considering the evolution of the aromatic profile. Hence, the goal of this research is to study the behavior of the main volatile compounds of grapes in order to better conduct the harvest.

METHODS: Two vineyard plots during two consecutive vintages (2019, 2020) were used to collect different fractions of 30 whole bunches. The samples were collected every week from pea-size to over ripeness (>21 °Brix) and then were stored at – 40°C until further analysis. Berries were grounded according to the protocol as described in Poitou, 2016. Grape powder were obtained and then analyzed for free & total volatiles by SPME-GC/MS (Young et al. 2015 ; Poitou, 2016). Principal component analysis (PCA) was conducted on the means of all significantly different parameters to elucidate the differences between grapes according to the maturity stage (Agilent MassProfiler Pro).

RESULTS: The kinetics of the volatile compounds during maturation showed strong variations with multiple trends depending the stage. Linear increase (e.g β-damascenone) or decrease (e.g p-cymene) of volatiles and a peak for cis-3-hexenol at véraison were found. Similarly to previous studies (Poitou, 2016 ; Ferrari et al. 2012), aromatic compounds were found to exhibit the same pattern. According to Rosillo et al. 1999, Ugni blanc & Chardonnay presents similar aromatic properties with low concentration of monoterpenes. Finally, the analysis of total volatiles showed the presence of newly identified terpenes in Ugni blanc grapes.

CONCLUSION

These results gave new insights for Ugni blanc aromatic characterization. Identification of terpenes with the total volatile method concludes that they are in their glycosylated form in grapes. Thus, they may be released during fermentation or distillation and participate to the aromatic complexity of wine distillates. With climate change, sugar concentration is expected to increase and will decouple sugar/acidity balance and the aromatic maturity. Therefore, understanding the aromatic maturity of Ugni Blanc will help growers to adapt their harvest date.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Amandine Bernier

Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France,Julia, GOUOT, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Adeline, BARREAU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Panagiotis, STAMATOPOULOS, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Xavier POITOU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France

Contact the author

Keywords

aromatic potential, berry composition, maturity, ugni blanc

Citation

Related articles…

Aroma accumulation trends during berry development and selection of grape aroma candidate genes suitable for functional characterization

Grape flavour management in the vineyard requires knowledge of the derivation of individual flavour and aroma characteristics and the effects that different concentrations and interactions between these compounds have on flavour potential.

Zoning of viticulture in Yugoslavia

The last official zoning of Viticulture in Yugoslavia was performed 1978. year, when (according to recommendation of OIV and European Economic Community), regions, sub regions and vineyards districts were established supposing that the varieties which will be exhibit ail the positive agro biological and technological characteristics.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.