Evolution of grape aromatic composition in cv. Ugni blanc

Abstract

AIM: Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar, which is the main variety planted. According to the Cognac Appellation, harvest can occur between 13 & 21 °Brix. To date the harvest is assessed by vine growers only by sugar & acidity ripeness without considering the evolution of the aromatic profile. Hence, the goal of this research is to study the behavior of the main volatile compounds of grapes in order to better conduct the harvest.

METHODS: Two vineyard plots during two consecutive vintages (2019, 2020) were used to collect different fractions of 30 whole bunches. The samples were collected every week from pea-size to over ripeness (>21 °Brix) and then were stored at – 40°C until further analysis. Berries were grounded according to the protocol as described in Poitou, 2016. Grape powder were obtained and then analyzed for free & total volatiles by SPME-GC/MS (Young et al. 2015 ; Poitou, 2016). Principal component analysis (PCA) was conducted on the means of all significantly different parameters to elucidate the differences between grapes according to the maturity stage (Agilent MassProfiler Pro).

RESULTS: The kinetics of the volatile compounds during maturation showed strong variations with multiple trends depending the stage. Linear increase (e.g β-damascenone) or decrease (e.g p-cymene) of volatiles and a peak for cis-3-hexenol at véraison were found. Similarly to previous studies (Poitou, 2016 ; Ferrari et al. 2012), aromatic compounds were found to exhibit the same pattern. According to Rosillo et al. 1999, Ugni blanc & Chardonnay presents similar aromatic properties with low concentration of monoterpenes. Finally, the analysis of total volatiles showed the presence of newly identified terpenes in Ugni blanc grapes.

CONCLUSION

These results gave new insights for Ugni blanc aromatic characterization. Identification of terpenes with the total volatile method concludes that they are in their glycosylated form in grapes. Thus, they may be released during fermentation or distillation and participate to the aromatic complexity of wine distillates. With climate change, sugar concentration is expected to increase and will decouple sugar/acidity balance and the aromatic maturity. Therefore, understanding the aromatic maturity of Ugni Blanc will help growers to adapt their harvest date.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Amandine Bernier

Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France,Julia, GOUOT, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Adeline, BARREAU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Panagiotis, STAMATOPOULOS, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Xavier POITOU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France

Contact the author

Keywords

aromatic potential, berry composition, maturity, ugni blanc

Citation

Related articles…

OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

Oxygen transfer rate (OTR) is a technical property of closure, and it modulates the oxygen supply to the wine during its bottle aging. It’s an important parameter to take into account in the analysis of wine aroma evolution. OTR distribution is well documented for new closures, but little research has been published on its determination for aged closures. Initial oxygen release after bottling impacts the composition of wines during the first years of storage), but the link between OTR, sensory perception and aroma composition after many years of aging has not yet been clearly studied. 

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.
To maintain the socio-economic impact of this sector, new challenges need to be addressed.

Effect of plant fining agents in the must flotation process. Functional characterization

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.