Evolution of grape aromatic composition in cv. Ugni blanc

Abstract

AIM: Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar, which is the main variety planted. According to the Cognac Appellation, harvest can occur between 13 & 21 °Brix. To date the harvest is assessed by vine growers only by sugar & acidity ripeness without considering the evolution of the aromatic profile. Hence, the goal of this research is to study the behavior of the main volatile compounds of grapes in order to better conduct the harvest.

METHODS: Two vineyard plots during two consecutive vintages (2019, 2020) were used to collect different fractions of 30 whole bunches. The samples were collected every week from pea-size to over ripeness (>21 °Brix) and then were stored at – 40°C until further analysis. Berries were grounded according to the protocol as described in Poitou, 2016. Grape powder were obtained and then analyzed for free & total volatiles by SPME-GC/MS (Young et al. 2015 ; Poitou, 2016). Principal component analysis (PCA) was conducted on the means of all significantly different parameters to elucidate the differences between grapes according to the maturity stage (Agilent MassProfiler Pro).

RESULTS: The kinetics of the volatile compounds during maturation showed strong variations with multiple trends depending the stage. Linear increase (e.g β-damascenone) or decrease (e.g p-cymene) of volatiles and a peak for cis-3-hexenol at véraison were found. Similarly to previous studies (Poitou, 2016 ; Ferrari et al. 2012), aromatic compounds were found to exhibit the same pattern. According to Rosillo et al. 1999, Ugni blanc & Chardonnay presents similar aromatic properties with low concentration of monoterpenes. Finally, the analysis of total volatiles showed the presence of newly identified terpenes in Ugni blanc grapes.

CONCLUSION

These results gave new insights for Ugni blanc aromatic characterization. Identification of terpenes with the total volatile method concludes that they are in their glycosylated form in grapes. Thus, they may be released during fermentation or distillation and participate to the aromatic complexity of wine distillates. With climate change, sugar concentration is expected to increase and will decouple sugar/acidity balance and the aromatic maturity. Therefore, understanding the aromatic maturity of Ugni Blanc will help growers to adapt their harvest date.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Amandine Bernier

Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France,Julia, GOUOT, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Adeline, BARREAU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Panagiotis, STAMATOPOULOS, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Xavier POITOU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France

Contact the author

Keywords

aromatic potential, berry composition, maturity, ugni blanc

Citation

Related articles…

Efficacy of tannins of different botanical origin as partial or total substitute of SO2 to preserve a Cortese white wine during storage in cellar

While SO2 is one of the oldest and widest additive used in enology for its well-known antioxidant, anti-laccase and antimicrobial properties, it can cause health problems in some individuals.

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.