Evolution of grape aromatic composition in cv. Ugni blanc

Abstract

AIM: Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar, which is the main variety planted. According to the Cognac Appellation, harvest can occur between 13 & 21 °Brix. To date the harvest is assessed by vine growers only by sugar & acidity ripeness without considering the evolution of the aromatic profile. Hence, the goal of this research is to study the behavior of the main volatile compounds of grapes in order to better conduct the harvest.

METHODS: Two vineyard plots during two consecutive vintages (2019, 2020) were used to collect different fractions of 30 whole bunches. The samples were collected every week from pea-size to over ripeness (>21 °Brix) and then were stored at – 40°C until further analysis. Berries were grounded according to the protocol as described in Poitou, 2016. Grape powder were obtained and then analyzed for free & total volatiles by SPME-GC/MS (Young et al. 2015 ; Poitou, 2016). Principal component analysis (PCA) was conducted on the means of all significantly different parameters to elucidate the differences between grapes according to the maturity stage (Agilent MassProfiler Pro).

RESULTS: The kinetics of the volatile compounds during maturation showed strong variations with multiple trends depending the stage. Linear increase (e.g β-damascenone) or decrease (e.g p-cymene) of volatiles and a peak for cis-3-hexenol at véraison were found. Similarly to previous studies (Poitou, 2016 ; Ferrari et al. 2012), aromatic compounds were found to exhibit the same pattern. According to Rosillo et al. 1999, Ugni blanc & Chardonnay presents similar aromatic properties with low concentration of monoterpenes. Finally, the analysis of total volatiles showed the presence of newly identified terpenes in Ugni blanc grapes.

CONCLUSION

These results gave new insights for Ugni blanc aromatic characterization. Identification of terpenes with the total volatile method concludes that they are in their glycosylated form in grapes. Thus, they may be released during fermentation or distillation and participate to the aromatic complexity of wine distillates. With climate change, sugar concentration is expected to increase and will decouple sugar/acidity balance and the aromatic maturity. Therefore, understanding the aromatic maturity of Ugni Blanc will help growers to adapt their harvest date.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Amandine Bernier

Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France,Julia, GOUOT, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Adeline, BARREAU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Panagiotis, STAMATOPOULOS, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France  Xavier POITOU, Jas Hennessy & Co, rue de la Richonne – CS20020, 16101 Cognac Cedex, France

Contact the author

Keywords

aromatic potential, berry composition, maturity, ugni blanc

Citation

Related articles…

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Enological potential of red grapes: cultivars and geographic origin of vineyards

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane

Identification of aroma markers in amarone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters. The analysis of 17 Amarone commercial wines from the same vintage (2015) was carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task.RESULTS: 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are b-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis/trans-whisky lactone. In certain samples, high OAVs were also observed for 4-ethyl phenol and 1,8-cineole.Results from the sorting task sensory analysis showed three clusters formed.